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Math 220
Exam 3
April 5, 2012

No books, calculators, or notes are allowed. Please make sure that your
cell phone is turned off. You will have 75 minutes to complete the exam.
Unless instructed otherwise, show your work on each problem.

Problem Points Points Problem Points Points
Possible Possible
1 12 6 12
2 10 7 2
3 5 8 10
4 16 9 9
5 12 10 12

Total Score:



1. (12 points) Find the absolute maximum and absolute minimum of
h(z) = 22 4+ 32* — 122 + 1 on [0, 2].
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2. (5 points each)
A. Find the linearization (tangent line approximation) of g(x) = e* at x = 0.
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B. Use your answer from Part A to estimate el
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3. (5 points) Find dy if y = cos(z* + 1).
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4. The function f(z) and its first and second derivatives are:
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Find the information below about f(x), and use it to sketch the graph of f(z).
When appropriate, write NONE. No work needs to be shown on this problem.

A. (1 point) Domain of f(x): (~o9) o)

B. (1 point) y-intercept: fa)z0 so (00) 4. intercept( ) £¢)=0 9%’0 so (§o)
C. (1 point) Is f(x) even or odd? odd t(-x)= = = -£(x)
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D. (1 point) Vertical asymptote(s): _None

E. Horizontal asymptote(s 7= | and y=-f
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F. (1 point) Interval(s) f(z) is 1ncreasmg (=50, 09)

(1 point) Interval(s) f(z) is decreasing: None
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G. (1 point) Local maximum(s)/minimum(s) (z, y): None [Thoe de no cr'tisl ke s/
H. (1 point) Interval(s) f(z) is concave up: _ (=¢% 0)
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. (1 point) Inflection point(s) (z,y): — (0,0]

I
J. (5 points) Sketch y = f(x) on the graph below.
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5. (3 points each) y = V/(x) is plotted above. Find:
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A. Interval(s) where b(x) is increasing:

B. x-coordinate(s) where b(z) has a local max: __X= 3 local min: X~/
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concave down:

C. Interval(s) where b(x) is concave up:

D. z-coordinate(s) where b(x) has an inflection point: _X = l

6. (12 points) At noon, Ship A is 1 mile east of Ship B. Ship A is sailing east at
1 miles per hour, and Ship B is sailing north at 2 miles per hour. How fast is
the distance between the ships changing at 2:00 PM.
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7. (2 points) Evaluate the expression 6+9/3. (No work needs to be shown.)
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8. (10 points) The radius of a circle is increasing at a rate of 2 ft/s. At what rate
is the area inside the circle increasing when the radius is 10 ft.
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9. (3 points each) A stone is thrown vertically upward, and its height in feet after
t seconds is given by s(t) = 32t — 16¢2.

A. Find the velocity of the stone at time ¢ seconds.
SO=239-32¢ =29 (1-¢)

B. Over what time interval is the stone going upward?

O sec S‘ECI sec

C. What is the maximum height the stone reaches?
The stene reaches 1ts maximum helght ot 1= | sec,

s(¢)=321- 16 1= [6 L+,

10. (12 points) A rectangular open-topped box is to have a square base and volume
8 ft3. If material for the base costs $2 per ft> and material for the sides costs
$1 per ft?, what dimensions minimize the cost of the box? (Justify why your
answer is an absolute minimum.)
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