Exam 1 September 17, 2014 Math 220 — _

1. (4 points) Write an equation for the line with slope 5 that passes through the point (3, 1).

2. (5 points) Find
$$\lim_{x \to -\infty} \frac{6x^8 + 2x^3 + 1}{3x^8 + 4x^7 + x^2}$$
.

3. (7 points) Find the constant c that makes the following function continuous.

$$q(x) = \begin{cases} x^2 + 2 & \text{if } x > 2\\ x + c & \text{if } x \le 2 \end{cases}$$

4. (3 points each) Consider the graph of y = f(x) above. State the value of each of the below quantities. If the quantity does not exist, write "does not exist".

A.
$$\lim_{x \to -1} f(x)$$
 E. $\lim_{x \to 1^-} f(x)$

B.
$$\lim_{x \to -2^{-}} f(x)$$
 F. $\lim_{x \to 1^{+}} f(x)$

C.
$$\lim_{x \to -2^+} f(x)$$
 G. $\lim_{x \to 1} f(x)$

D.
$$\lim_{x \to 6^{-}} f(x)$$
 H. $f(1)$

5. (7 points each) Evaluate the following limits.

$$\mathbf{A.} \lim_{x \to 0} \frac{7\sin(x)}{x}$$

B.
$$\lim_{x \to 4} \frac{x-4}{x^2-5x+4}$$

C.
$$\lim_{x \to 9} \frac{3 - \sqrt{x}}{9 - x}$$

D.
$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right)$$

x	1.9	1.99	1.999	1.9999	2.0001	2.001	2.01	2.1
k(x)	4.89	4.993	4.998	4.99992	5.00023	5.004	5.07	5.12

6. (4 points) Based on the table above, estimate $\lim_{x \to 2} k(x)$.

7. (7 points) Show that $x^7 + x^2 - 1 = 0$ has a solution in the interval [0, 1].

8. (7 points) Sketch the graph of $y = 3\cos(\pi x) - 1$.

		5						
		J						
		4 0						
		ວ ດ						
		<u>Z</u> - 1						
		1 -						
_								
_	2 –	1 1	0	1 2	2 :	3 4	4 5	5
	2 -	1 -1 -	0	1	2 :	3 4	4 E	5
	-2 —	-1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	0	1	2	3 2	4	5
	2 —	$\begin{array}{c} 1 & -1 & -2 & -2 & -3 & -3 & -3 & -3 & -3 & -3$	0	1	2	3	4 5	5
	2	1 	0	1	2	3	4 5	5

9. (4 points each) A piece of paper is blowing in the wind. The function h(t) graphed above denotes the height in feet of the paper after t seconds. The dotted line above is the tangent line to y = h(t) at t = 3 seconds.

(a) Find the average velocity of the paper over the time interval [3, 6] seconds.

(b) Find the instantaneous velocity of the paper at time t = 3 seconds.

10. (6 points) Given that
$$\lim_{x \to 1} g(x) = 4$$
 and $\lim_{x \to 1} m(x) = 2$, find $\lim_{x \to 1} \frac{g(x) + x}{m(x)}$