

1. (2 points each) y = v'(x) is plotted above. Find the following:

A. Interval(s) where v(x) is increasing:

B. Interval(s) where v(x) is decreasing: _____

2. (10 points) Let $q(t) = \frac{1}{t}$. Using the limit definition of the derivative, find q'(3).

3. (4 points) Suppose that a waiter brings you a cold cup of iced tea. Let F(t) denote the temperature in degrees Fahrenheit of the tea after t minutes. Is F'(3) positive or negative? Explain your answer.

4. (6 points) Find $\frac{d^2}{dx^2}5^x$.

5. The height in feet of a ball t seconds after being thrown is given by $h(t) = -16t^2 + 10t + 6$.

A. (4 points) Find the velocity 1 second after the ball is thrown.

B. (2 points) Is the ball going upward or downward 1 second after being thrown?

6. (9 points) Let $w(x) = x^{\cos(x)}(x^3 + x)^5$. Find w'(x).

7. (9 points) Find $\frac{dy}{dx}$ for $x^4 + xy + 2y^3 = 5$.

8. (7 points each) Find the following derivatives. You do not need to simplify.

A.
$$\frac{d}{dx}(\cos(e^x))$$

B.
$$\frac{d}{dx} (\ln(x) \cdot \arctan(x))$$

C.
$$\frac{d}{dx} \left(\frac{\tan(x)}{x^8 + x^4} \right)$$

D.
$$\frac{d}{dx} (\sin(\cos(\tan(x))))$$

9. (8 points) Given the graph of y = k(x), sketch the graph of y = k'(x) in the empty plot below.

10. (8 points) Find the equation of the tangent line to $y = \cos(x)$ at $x = \frac{\pi}{2}$.

11. (8 points) A 5-foot ladder rests against the wall. The bottom of the ladder slides away from the wall at a rate of 2 feet/second. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is 3 feet from the wall?