
February 13, 2014 Math 220 Exam 1 ____ —

1. (5 points) Write an equation for the line with slope 2 that passes through the point (0, 1).

2. (4 points) If r(x) = x + 5 and $u(x) = x^3$, find r(u(x)).

3. (9 points) Find the constant c that makes the following function continuous.

$$q(x) = \begin{cases} 3 & \text{if } x > 2\\ x + c & \text{if } x \le 2 \end{cases}$$

4. (4 points each) Consider the graph of y = f(x) above. State the value of each of the below quantities. If the quantity does not exist, write "does not exist".

A.
$$\lim_{x \to 0} f(x)$$
 E. $\lim_{x \to 1^{-}} f(x)$

B.
$$\lim_{x \to -2^{-}} f(x)$$
 F. $\lim_{x \to 1^{+}} f(x)$

C.
$$\lim_{x \to -2^+} f(x)$$
 G. $\lim_{x \to 1} f(x)$

D.
$$\lim_{x \to 6} f(x)$$
 H. $f(1)$

5. (7 points each) Evaluate the following limits.

A.
$$\lim_{x \to 0} \frac{3\sin(x)}{x}$$

B.
$$\lim_{x \to 5} \frac{x}{x^2 - 25}$$

$$\mathbf{C.} \lim_{x \to 4} \frac{2 - \sqrt{x}}{x - 4}$$

D.
$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)$$

5 4 3 $\mathbf{2}$ 1 0 1π 2π 3π -2π -1π 4π 5π -1-2-3-4 -5^{-1}

6. (8 points) Sketch the graph of $y = 3\sin(x) + 1$.

7. (5 points) Given that $\lim_{x \to 2} w(x) = 3$ and $\lim_{x \to 2} h(x) = 5$, find $\lim_{x \to 2} \frac{w(x) + 1}{h(x)}$.

8. (9 points) Suppose that a particle has position function $s(t) = t^2 + 1$ meters at time t seconds. Find the average velocity over the time interval [2, 4].