Exam 3 (Version A) – April 17, 2014 Math 220 ____

1. (12 points) Find the absolute minimum and maximum of $m(x) = x^3 - 3x + 2$ on the interval [0,2].

2. (12 points) What is the smallest perimeter possible for a rectangle of area 4 ft^2 ? (Explain why your answer corresponds to a minimum.)

5. (9 points) Estimate the area below y = h(x) and above the x-axis for $0 \le x \le 6$ by using n = 3 subintervals, taking the sampling points to be left endpoints. In the language of our textbook, this is L_3 . Also, illustrate the rectangles on the graph above.

6. (6 points each) Find the following most general antiderivatives. I hope that you "C" what I mean.

$$\mathbf{A.} \int (7 + 2x + 3e^x) \, dx =$$

B.
$$\int \left(\sec^2(\theta) + \cos(\theta)\right) d\theta =$$

7. (12 points) The length of a rectangle is increasing at a rate of 2 ft/s, and its width is increasing at a rate of 5 ft/s. At what rate is the area of the rectangle increasing when the length is 4 ft and the width is 6 ft?

8. (10 points) Use a linearization for the function $f(x) = \sqrt{x}$ at x = 4 to approximate $\sqrt{4.04}$.

9. (10 points) Find the function k(x) provided that $k'(x) = 2x^3 + 3x + 2$ and k(0) = 2.