Math 220 - Final Exam (Version E) - May 14, 2014

1. (7 points each) Find the following:

A.
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 6}}{3x + 5}$$

$$\mathbf{B.} \int_0^2 x^2 e^{x^3} \, dx$$

C.
$$\frac{dy}{dx}$$
 if $x^2 + 4y^2 = 3$

2. (7 points) Let $f(x) = \frac{1}{x}$. Using the limit definition of the derivative, find f'(2).

3. (5 points each) Find the following:

A.
$$\frac{d}{dx}\cos(x^2+3x)$$

B.
$$\frac{d}{dx}\left(\frac{2^x}{x^4+x^2}\right)$$

$$\mathbf{C.} \, \int_0^3 t^2 \, dt$$

4. (3 points each) y = g(x) is plotted above. Evaluate the following definite integrals. (No work needs to be shown.)

$$\mathbf{A.} \, \int_{-1}^{2} g(x) \, dx =$$

$$\mathbf{B.} \, \int_2^6 g(x) \, dx =$$

5. (9 points) Find the area bounded between $y = x^4$ and y = x.

6. (6 points) Find the linearization of $k(x) = e^x$ at x = 0.

7. (10 points) A rectangular open-topped box is to have a square base and volume 8 ft³. If material for the base costs \$2 per ft² and material for the sides costs \$1 per ft², what dimensions minimize the cost of the box? (Justify why your answer is an absolute minimum.)

8. (6 points) Find
$$\frac{d}{dx} \int_0^{x^2} \cos(t^3 + 1) dt$$
.

9. (9 points) Find the volume of the solid obtained by rotating the region bounded by y = 0, x = 4, and $y = x^2$ around the x-axis.

11. (4 points) Let w(t) be the rate that oil flows out of a storage tank in gallons per minute at time t minutes after the tank ruptures. What does $\int_{0}^{100} w(t) dt$ represent?