Final: MATH 220 - Calculus 1

July 28th 2017

Name:

Instructor:

1	2	3	4	5	6	7	8	9	10	Total

Instructions: You have 1 hour and 15 minutes to complete this exam. Show all of your work. Calculators are not allowed.

1) (20 points) Find the area of the region enclosed by $y = x^2 + 4$, y = x, x = -1 and x = 2.

- 2) (5 points each) Compute the following:
- a) $\frac{d}{dx} (\int_{-1}^{e^{3x}} (\ln(t) + t) dt)$

b)
$$\int (-x^3 + 2x^{-3}) dx$$

c)
$$\int x \cos(x^2 + 1) dx$$

d)
$$\int_0^1 (3x^2 + 2x)(x^3 + x^2)^3 dx$$

3) (20 points) Find the volume of the solid with base bounded by $y = x^2 + 2$ and y = 6, where the cross-sections perpendicular to the y-axis are rectangles of height 3.

4) (15 points) Calculate the instantaneous rate of change for $f(x) = \frac{1}{x^2}$ at a = -2 using the limit definition.

5) (15 points) Find and classify the critical values of the function $f(x) = \frac{x^2}{3x-6}$.

6) (5 points each) Compute the following:

a)
$$\frac{d}{dx}((x^3+4)e^{\sin(x)})$$

b) Find
$$\frac{d^2y}{dx^2}$$
 for $y = e^{-x} + \ln(x)$.

c) Find $\frac{dy}{dx}$ for $y^3 = \cos(y) + x^2$.

d)
$$\frac{d}{dz}((z-3z^{-1})^2)$$

7) (4 points each) Evaluate the following limits:

a) $\lim_{x\to 0} \frac{x \sin(x)}{\cos(x) - 1}$

b) $\lim_{x \to -3} \frac{\ln(x+5)}{x+1}$

8) (10 points) State The Fundamental Theorem of Calculus Pt I, Pt II, or the Intermediate Value Theorem.

9) (12 points) Sketch the graph of a function y = f(x) satisfying all of the following criteria:

(i) Jump discontinuity at x = -3 such that f(x) is left-continuous at x = -3.

- (ii) $\lim_{x\to 5} f(x) = -4$ and f(5) = 0.
- (iii) $\lim_{x\to 1^+} f(x) = +\infty$ and $\lim_{x\to 1^-} f(x) = -\infty$

10) (10 points) Identify the graphs of f(x), f'(x), and f''(x):

