NAME	
7 17 77177	

Rec. Instructor:

Signature _____

Rec. Time _____

#1	#2	#3	#4	#5	#6	#7	#8	#9	Total
12	9	12	18	16	12	5	8	8	100

CALCULUS I - EXAM 3 - SPRING 2019 April 11, 2019

Show all work for full credit. No books, notes or calculators are permitted. The point value of each problem is given in the left-hand margin. No need to simplify derivatives or integrals.

(12) 1.
$$f(x) = x^3 - 12x + 4$$

a) f is decreasing on _____.

- b) f has a local maximum at $x = \underline{\hspace{1cm}}$.
- c) f is concave up on _____.

d) f has an inflection point at $x = \underline{\hspace{1cm}}$.

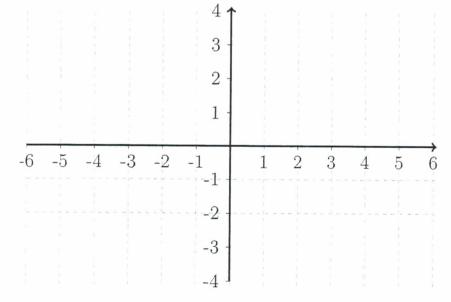
(9) 2. Find the absolute maximum and absolute minimum value on [-3,1] for $f(x) = x^4 - 8x^2 + 4$.

Absolute maximum = ____ at x = ____. Absolute minimum = ___ at x = ____.

(12) 3. Evaluate the limits at infinity.

a)
$$\lim_{x \to -\infty} \frac{x^2 - 3x^3 + 1}{x^3 + 2x - 1} =$$

b)
$$\lim_{x \to \infty} \frac{x^2 + x - 9}{x^3 - 5x + 6} =$$


$$c) \qquad \lim_{x \to -\infty} \frac{\sqrt{4x^2 + 3}}{x + 3} =$$

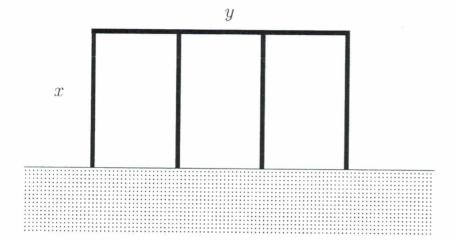
(18) 4. The function f and its first and second derivatives are given:

$$f(x) = \frac{x^2 - 1}{x^2 - 4},$$
 $f'(x) = \frac{-6x}{(x^2 - 4)^2},$ $f''(x) = \frac{6(3x^2 + 4)}{(x^2 - 4)^3},$

Obtain the following information. Write NONE when appropriate.

- (a) x-intercepts:______, y-intercepts:______.
- (b) Vertical asymptotes: _____. Horizontal asymptotes: _____.
- (c) Increasing on: ______, decreasing on: ______.
- (d) Coordinates of local maxima: ______, local minima: _____.
- (e) Concave upwards on: ______, downwards on: _____
- (f) Coordinates of inflection points: ______.
- (g) Use this information to sketch the graph of f

(16) 5. Evaluate the limits

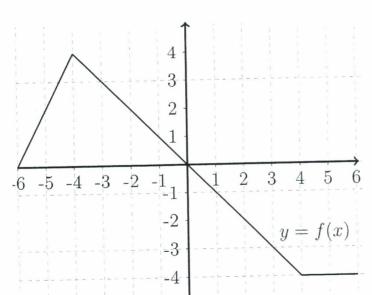

a)
$$\lim_{x \to 0} \frac{x^2 + 4x}{x + \sin x}$$

b)
$$\lim_{x \to 0} \frac{e^{3x} - 1 - 3x}{x^2}$$

c)
$$\lim_{x \to \infty} x \ln\left(1 + \frac{2}{x}\right)$$

$$d) \quad \lim_{x \to \infty} x^{3/x}$$

(12) 6. You have 4000 feet of fencing to enclose three adjacent rectangular pens next to a river. No fence is needed along the river. Find the dimensions x and y that maximize the area enclosed.


(5) 7. Solve the initial value problem: $f'(x) = 3x^2 - 4x + 5$, f(1) = 3.

(8) 8. Find the indicated antiderivatives

a)
$$\int 3\sqrt{x} + 2\sin x \ dx$$

$$b) \qquad \int \frac{3}{x^2} + 4e^{2x} \ dx$$

(8) 9. For the function f graphed below evaluate the definite integrals

a)
$$\int_{-4}^{0} f(x) dx =$$

b)
$$\int_{-2}^{4} f(x) dx =$$
