NAME	Rec. Instructor:
Signature	Rec. Time

pg 1	pg 2	pg 3	pg 4	pg 5	pg 6	pg 7	pg 8	pg 9	pg 10	Total
15	25	25	25	24	23	12	17	20	14	200

CALCULUS I - FINAL EXAM - SPRING 2019 May 15, 2019

Show all work for full credit. No books, notes or calculators are permitted. The point value of each problem is given in the left-hand margin. No need to simplify derivatives or integrals. You can use guess and check for integrals.

(8) 1. Find the equation of the line tangent to $y = 2x^3 - x^2 + 4$ at x = 1.

(7) 2. Use implicit differentiation to find
$$\frac{dy}{dx}$$
 if $x^3 + xy^3 = 7y + 3$.

(25) 3. Differentiate the following ($\arctan x$ is the inverse tangent $\tan^{-1} x$).

a)
$$\frac{d}{dx}(3^x + 5 \arctan x) =$$

b)
$$\frac{d}{dx}\left(3\sqrt{x} + \frac{2}{x^5}\right) =$$

c)
$$\frac{d}{dx}(x^3 \tan x) =$$

d)
$$\frac{d}{dx}\left(\frac{x}{x^3+1}\right) =$$

e)
$$\frac{d}{dx} \left(\int_2^{x^2} \sqrt{1+t^2} \, dt \right) =$$

(25) 4. Differentiate the following with the chain rule

a)
$$\frac{d}{dx}\left(\ln(x^2+5)\right) =$$

b)
$$\frac{d}{dx}\left(\cos^7(3x+5)\right) =$$

c)
$$\frac{d}{dx} \left(e^{\sin x} \right) =$$

d)
$$\frac{d}{dx} \left(\frac{1}{(x^2 + 7x - 1)^3} \right) =$$

e)
$$\frac{d}{dx}\left(\sqrt{1+e^{2x}}\right) =$$

(25) 5. Integrate the following:

a)
$$\int \frac{1}{\sqrt{4-x^2}} + \sec^2 x \, dx =$$

b)
$$\int \frac{u^2 + 2}{u^3} du =$$

c)
$$\int (3t+1)^{10} dt =$$

$$d) \int \cos^5 x \sin x \, dx =$$

e)
$$\int x^2 e^{-x^3} dx =$$

(24) 6. Integrate the following:

a)
$$\int \frac{t^2}{1+t^3} dt =$$

b)
$$\int \frac{1}{x (\ln x)^3} dx =$$

c)
$$\int_0^4 \sqrt{1+2x} \, dx =$$

d)
$$\int x(x+2)^{99} dx =$$

(15) 7. Evaluate the limits:

a)
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4} =$$

b)
$$\lim_{x \to \infty} \frac{x^2 - 5x^3 + 6}{x^3 + x - 9} =$$

c)
$$\lim_{x \to 0} \frac{1 + 2x - e^{2x}}{x^2} =$$

(8) 8. The radius of a circular oil spill is increasing at a rate of 3 feet per minute. At what rate is the area increasing when the radius of the circle is 20 feet?

9. The function f and its first and second derivatives are given:

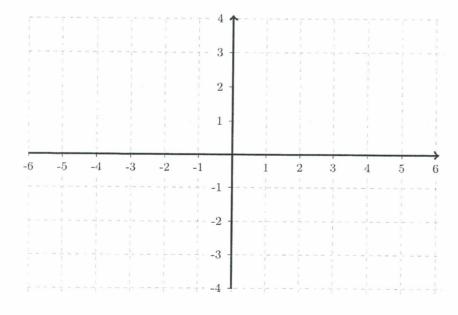
$$f(x) = \frac{3(x^2 - 1)}{x^2 + 3},$$
 $f'(x) = \frac{24x}{(x^2 + 3)^2},$ $f''(x) = \frac{-72(x^2 - 1)}{(x^2 + 3)^3},$

Obtain the following information.

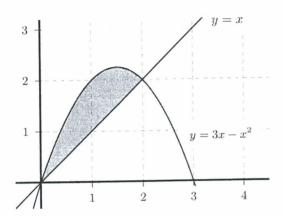
- (2) (a) The intercepts:_____.
- (2) (b) Horizontal asymptotes: ______. Vertical asymptotes: NONE.
- (3) (c) Coordinates of local maxima: ______, local minima: _____.

(3) (d) Coordinates of the inflection points:

(2) (e) Use this information to sketch the graph of f



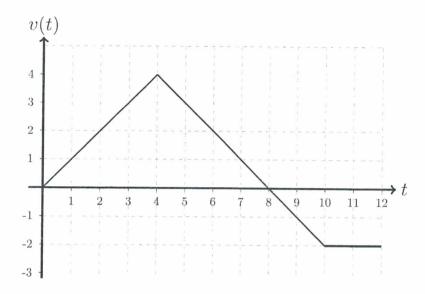
(7) 10. a) Find the area of the region between the curves y = x and $y = 3x - x^2$



(5) b) Use the disc/washer method to set up an integral representing the volume obtained by rotating the region in (a) about the x-axis. Do **not** evaluate it!

(5) c) Use the cylindrical shell method to set up an integral representing the volume obtained by rotating the region in (a) about the y-axis. Do **not** evaluate it!

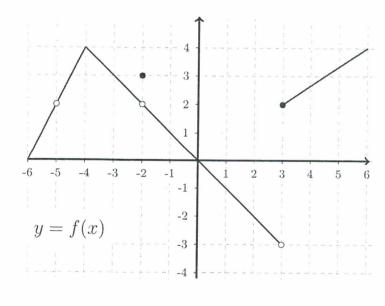
(8) 11. A particle moves forwards and backwards in a straight line for 12 seconds. The graph of its velocity v(t) is shown in ft/sec.



a) What is the distance between its starting and finishing points?

b) What was the total distance that the particle travelled? _____.

(12) 12. Use the graph to find the following. Put does not exist if appropriate.



a) $\lim_{x \to -2} f(x) =$ _____

b) $\lim_{x \to 3^+} f(x) =$ _____

c) f'(0) =_____

d) $\int_0^2 f(x) dx =$ _____

(7) 13. Use logarithmic differentiation to find $\frac{dy}{dx}$ for $y = (x+1)^x$

(7) 14. Give the limit definition of the derivative of a function f(x) at x = a

$$f'(a) = \lim$$

and use it to find f'(2) for $f(x) = 3x^2$.