Name:_____

Instructor:_____

Signature:_____

Wildcat ID:_____

Math 220

 $\begin{array}{c} \text{Exam 1}\\ \text{June 20, 2019} \end{array}$

No books, calculators, or notes are allowed. Please make sure your cell phone is turned off. You will have 75 minutes to complete the exam.

Problem	Points	Points Possible
1		12
2		10
3		10
4		6
5		20
6		10
7		12
8		8
9		12
Total Score		100

- 1. (2 points each) Consider the graph of y = f(x) above. State the value of each of the quantities below. If the limit does not exist or is infinite, write "does not exist," $+\infty$, or $-\infty$ whenever appropriate. You do not need to show any work.
 - (a) $\lim_{x \to -4^{-}} f(x) =$
 - (b) $\lim_{x \to -4} f(x) =$
 - (c) $\lim_{x \to 2^+} f(x) =$
 - (d) f(-4) =
 - (e) List all removable discontinuities of f(x): x =
 - (f) List all infinite discontinuities of f(x): x =

2. (5 points each) An object moves along a straight line with position s(t) meters at time t seconds. Given the table of data below, answer the following questions. Show all work.

t	s(t)
0	0
1	3
1.1	3.3
2	6
3	9

(a) Find the average velocity of the object over the time interval $1 \le t \le 3$ seconds.

(b) Give the best estimate of the instantaneous velocity of the object at time t = 1 second, based on the given data.

3. (5 points each)

(a) Let $f(x) = x^4 + 2x - 1$. Use the Intermediate Value Theorem to show that there is a point c between -1 and 1 such that f(c) = 0. Give a careful explanation to receive full credit.

(b) Use the Intermediate Value Theorem to show that the equation $2\sin x = \cos 4x$ has a solution on the interval $[0, \pi/4]$. Give a careful explanation to receive full credit.

4. (6 points) Verify that $\lim_{x \to 1} (2x - 3) = -1$ using the limit definition.

5. (5 points each) Evaluate the following limits. Write ∞ or $-\infty$ for infinite limits and "does not exist" for limits that do not exist. Show all work.

(a)
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x^2 - x - 6}$$

(b)
$$\lim_{t \to 2^+} \frac{2t+8}{t^2-4}$$

(c)
$$\lim_{x \to 7} \frac{\sqrt{x-3}-2}{x-7}$$

(d)
$$\lim_{x \to 1} \frac{3x^3 + 3x + 3}{x^3 + 1}$$

- **6.** (10 points) Draw the graph of a function f(x) with the following properties.
 - (i) The domain of f(x) is [-5, 5].
 - (ii) $\lim_{x \to 0^-} f(x) = -\infty$
 - (iii) f(0) = 1
 - (iv) f(x) is left continuous but not continuous at x = 2
 - (v) $\lim_{x \to 3^+} f(x) = 2.$

7. (4 points each) Find all of the horizontal asymptotes of each of the following functions. If the function has no horizontal asymptotes, write "no horizontal asymptotes."

(a)
$$g(x) = \frac{4x^4 + 2x^2 - x + 1}{-x^4 + x + 8}$$

horizontal asymptotes: y =

(b)
$$h(x) = \frac{3x^3 - x^2 + 2x - 1}{x^2 - 2}$$

horizontal asymptotes: y =

(c) $f(x) = e^{-x}$

horizontal asymptotes: y =

8. (8 points) Use the Squeeze Theorem to evaluate $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$. Write ∞ or $-\infty$ for infinite limits and "does not exist" for limits that do not exist. Show all work.

9. (6 points each) Determine each of the following limits. Write ∞ or $-\infty$ for infinite limits and "does not exist" for limits that do not exist. Show all work.

(a) $\lim_{h \to 0} \frac{3h}{\sin(h)}$

(b) $\lim_{\theta \to 0} \frac{\cos \theta - \cos^2 \theta}{\theta}$