Math 220 Midterm 1

Name:	
Recitation instructor:	
Recitation time:	

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted.
- Read each question carefully and show your work.

Grading

1	/16	2	/8
3	/8	4	/10
5	/15	6	/23
7	/20	Total	100

Problem 1. (16 points) Evaluate the following limits.

A. (3 points)
$$\lim_{x \to 1} (x^6 + 4\sqrt{x} + 1)$$

B. (3 points)
$$\lim_{\theta \to \pi/2} \frac{\sin(\theta)}{\theta}$$

C. (4 points)
$$\lim_{t \to -1} \frac{t^2 + 3t + 2}{t + 1}$$

D. (6 points)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

Problem 2. (8 points) Use the Intermediate Value Theorem to show that there is a root of $f(x) = x^3 + 2x - 3$ in the interval (0,2). **Make sure to mention any properties of** f(x) **required to apply the Intermediate Value Theorem.**

Problem 3. (8 points) Given that $\lim_{x\to 5} u(x) = 1$ and $\lim_{x\to 5} w(x) = 3$, find the following limits.

A. (4 points)
$$\lim_{x \to 5} \frac{w(x) - 2}{u(x)}$$

B. (4 points)
$$\lim_{x\to 5} \frac{\sqrt{u(x)\cdot w(x)}}{x^2-1}$$

Problem 4. (10 points) Suppose that an object is at position $s(t) = \frac{2}{\sqrt{t}}$ feet at time t seconds.

A. (4 points) Find the average velocity of the object over a time interval from time 2 seconds to time 2 + h seconds.

B. (6 points) Find the instantaneous velocity of the object at time 2 seconds by taking the limit of the average velocity in Part A as $h \to 0$.

Problem 5. (15 points) Let $v(x) = x^2 + 2x - 1$.

A. (6 points) Find the slope of the tangent line to v(x) at x=0 by using one of the limit definitions of the derivative.

B. (4 *points*) Find the equation of the tangent line to y = v(x) at x = 0.

C. (5 points) Sketch v(x) and the tangent line to y = v(x) at x = 0 in the grid below.

Problem 6. (23 points)

(A - H: 2 points each) State the value of each of the below quantities. If the quantity does not exist, write "does not exist".

$$\mathbf{A.} \lim_{x \to -2^{-}} g(x)$$

D.
$$g'(-2)$$

$$\mathbf{B.} \lim_{x \to -2^+} g(x)$$

$$\mathbf{E.} \lim_{x \to 2^{-}} g(x)$$

C.
$$g(-2)$$

$$\mathbf{F.} \lim_{x \to 2^+} g(x)$$

G. $\lim_{x\to 2} g(x)$

I. (3 points) x in (-4,8) at which g(x) is discontinuous:

H. g'(-1)

J. (4 points) x in (-4,8) at which g'(x) is undefined:

Problem 7. (20 points) Find the following derivatives. You do NOT need to simplify.

A. (4 points)
$$\frac{d}{dx}(x^{10} + \sqrt{x})$$

B. (5 points) (Use the Product Rule)
$$\frac{d}{dx}[(x^{1/3}+x^{-3})(x^2-1)]$$

C. (5 points) (Use the Product Rule)
$$\frac{d}{dx}[(x^3-2)(x^{\pi}+x^{1/5})]$$

D. (6 points)
$$\frac{d}{dx} \left(\frac{x^2 + 6x}{\sqrt{x}} \right)$$