Math 220 Midterm 2

Name:		
Recitation instructor:		
Recitation time:		

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted.
- Read each question carefully and show your work unless explicitly told otherwise.

Grading

_			
1	/30	2	/10
3	/10	4	/15
5	/10	6	/15
7	/10	Total	/100

Problem 1. (30 points)

(6 points each) Find the following derivatives. You **do not need to simplify** your answers or show all steps. However, showing your work may help you earn partial credit if your answer is incorrect.

A.
$$\frac{d}{dx} \left(5e^x - \log_5(x) + \arctan(x) \right)$$

$$\mathbf{B.} \ \frac{d}{dx} \left(20^x \cdot \cos(x^{20}) \right)$$

C.
$$\frac{d}{dx}\arccos(\sqrt{x})$$

D.
$$\frac{d}{d\theta}\csc\left(\sin(\theta^2)\right)$$

$$E. \frac{d}{dx} \left(\frac{e^{2x} + \ln(2x+1)}{x^6 - 7x} \right)$$

Problem 2. (10 points) Find the derivative of $h(x) = 7^{x+5} \cdot x^{7 \tan(x)}$.

Problem 3. (10 points) Find $\frac{dy}{dx}$ if $\cos(x^2y^3) = e^x$.

Problem 4. (15 points) Let $f(x) = \frac{\sin(x)}{x - \pi + 1}$.

A. (10 points) Find the linearization for f(x) at $x = \pi$.

B. (5 points) Use the linearization to approximate $f(\pi + 0.02)$.

Problem 5. (10 points)	On an alien planet, Alice throws a softball vertically upward. Fo	r
$t \ge 0$, it has height in fe	eet given by $s(t) = 10 + 6t - t^2$, where t is in seconds.	

A. (6 points) Calculate s'(t). When is the softball going upward/downward?

B. (2 points) At what time does the softball obtain its maximum height?

C. (2 *points*) What is the acceleration s''(t)?

Problem 6. (15 points) Two airplanes are flying in the air at the same height: airplane A is flying east at 100 mi/h and airplane B is flying north at 200 mi/h. If they are both heading to the same airport, located 30 miles east of airplane A and 40 miles north of airplane B, at what rate is the distance between the airplanes changing?

Problem 7. (10 points) Let $f(x) = x^4 - 2x^2$.

(a) (5 points) Find all critical numbers of f(x) on the interval $(-\infty, \infty)$.

(b) (5 points) Find the absolute maximum and absolute minimum of f(x) on [-2,2].