Math 220 Midterm 3

Name:	
Recitation instructor:	
Recitation time:	

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted.
- Read each question carefully and show your work unless explicitly told otherwise.

Grading

1	/15	2	/12
3	/17	4	/10
5	/15	6	/15
7	/16	Total	/100

Problem 1. (15 points) The function f(x) and its first and second derivatives are:

$$f(x) = \sqrt{x^2 + 2x}$$

$$f'(x) = \frac{x+1}{\sqrt{x^2 + 2x}}$$

$$f'(x) = \frac{x+1}{\sqrt{x^2 + 2x}} \qquad f''(x) = -\frac{1}{(x^2 + 2x)^{3/2}}.$$

Find the information below about f(x), and use it to sketch the graph of f(x). When appropriate, write NONE. No work needs to be shown on this problem.

A. (3 point) Domain of f(x):

B. (1 point) *y*-intercept: _____

C. (1 point) *x*-intercept(s): _____

D. (1 point) Interval(s) f(x) is increasing:

E. (1 point) Interval(s) f(x) is decreasing:

F. (1 point) Interval(s) f(x) is concave up:

G. (1 point) Interval(s) f(x) is concave down:

H. (1 point) Inflection point(s) (x,y):

I. (5 points) Sketch y = f(x) on the graph below.

Problem 2. (12 points) (3 points each) In each of the following blanks, fill in "local max", "absolute max", "local min" or "absolute min".

A. If
$$h'(3) = 0$$
 and $h''(3) = 2$, then $h(x)$ has a _____ at $x = 3$.

B. If
$$h'(-2) = 0$$
 and $h''(-2) = -11$, then $h(x)$ has a _____ at $x = -2$.

C. If
$$f'(0) = 0$$
 and $f'(x) > 0$ on $(-\infty, 0)$ and $f'(x) < 0$ on $(0, \infty)$, then $f(x)$ has a ______ at $x = 0$.

D. If
$$g'(-1) = 0$$
 and $g''(x) = -1$ for all real numbers x , then $g(x)$ has a a at $x = -1$.

Problem 3. (17 points) Find the following limits. (Use limit notation correctly.)

A. (5 points)
$$\lim_{x\to\infty} \frac{x}{e^x}$$

B. (5 points)
$$\lim_{x \to -\infty} \frac{1 + e^x}{\sqrt{e^x + 1}}$$

C. (7 points) $\lim_{x \to 0^+} x^x$

Problem 4. (10 points) Let $f(x) = \frac{x\sqrt{x^2+9}}{x^2+3x+2}$.

A. (4 points) Find the vertical asymptote(s) of f(x).

B. (6 points) Find the horizontal asymptote(s) of f(x).

Problem 5. (15 points) A rectangular open-topped aquarium is to have a square base and volume 9 m³. The material for the base costs \$2 per m², and the material for the sides costs \$3 per m². What dimensions minimize the cost of the aquarium? (Make sure to justify why your answer corresponds to an absolute minimum.)

Problem 6. (15 points) Evaluate the following indefinite integrals - you do not need to simplify.

A. (4 points)
$$\int 2x + 2x^{-2} + 3x^{2022} dx$$

B. (5 points)
$$\int \sqrt{x} + \frac{5+x^2}{1+x^2} dx$$

C. (6 points)
$$\int e^x + \frac{1}{x} + \sec(x)\tan(x)dx$$

Problem 7. (16 points)

A. (8 points)

y = h(x) is plotted above. Estimate $\int_0^4 h(x) dx$ by using a Riemann sum with n = 4 subintervals, taking the sampling points to be right endpoints (the Right Hand Rule R_4). Also, illustrate the rectangles on the graph above.

B. (8 points)

y = g(x) is plotted above. Evaluate the following definite integrals. No work needs to be shown.

i.
$$\int_{1}^{2} g(x) dx =$$

$$\mathbf{ii.} \, \int_1^0 g(x) \, dx =$$

iii.
$$\int_2^6 g(x) \, dx =$$

iv.
$$\int_{1}^{3} g(x) \, dx =$$