Name	Rec. Instr
Signature	Rec. Time

Math 220 Exam 3 November 9, 2023

No books, calculators, or notes are allowed. *Please make sure that all cell phones, laptops, tablets, and smartwatches are turned off and put away.* You will have 75 minutes to complete the exam. Unless instructed otherwise, **show your work** on each problem.

Problem	Points	Points Possible	Problem	Points	Points Possible
1		16	6		12
2		25	7		8
3		8	8		10
4		6	9		8
5		7	Total Score		100

1. The function f(x) and its first and second derivatives are:

$$f(x) = \frac{12}{x^2 + 3}$$
 $f'(x) = \frac{-24x}{(x^2 + 3)^2}$
 $f''(x) = \frac{72(x - 1)(x + 1)}{(x^2 + 3)^3}$.

 Find the information below about $f(x)$, and use it to sketch the graph of $f(x)$.

 When appropriate, write NONE. No work needs to be shown on this problem.

 A. (1 point) Domain of $f(x)$:

 B. (1 point) y-intercept:

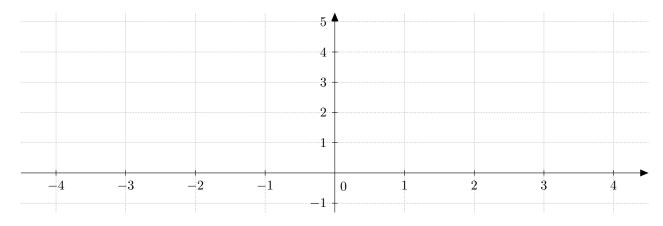
 C. (1 point) x-intercept(s):

 D. (1 point) Horizontal asymptote(s):

 E. (1 point) Interval(s) $f(x)$ is increasing:

 F. (1 point) Interval(s) $f(x)$ is decreasing:

 G. (1 point) Local maximum(s) (x, y) :


 H. (1 point) Local minimum(s) (x, y) :

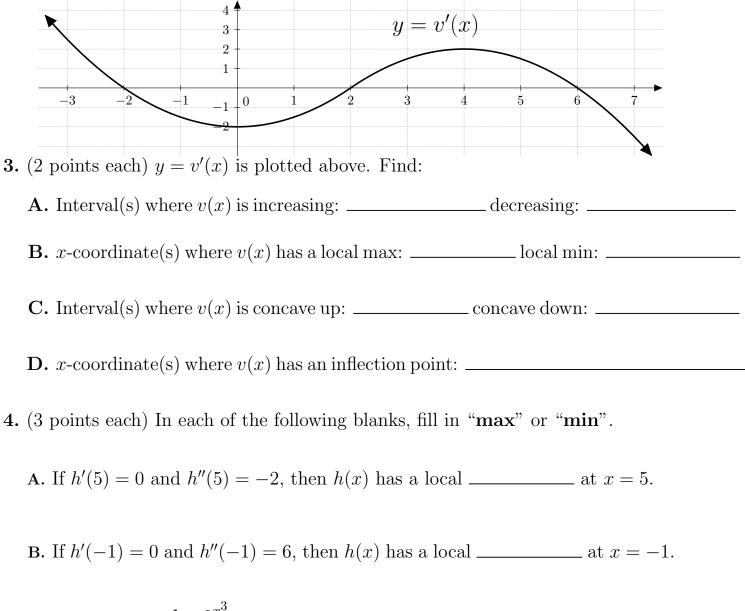
 J. (1 point) Interval(s) $f(x)$ is concave up:

 J. (1 point) Interval(s) $f(x)$ is concave down:

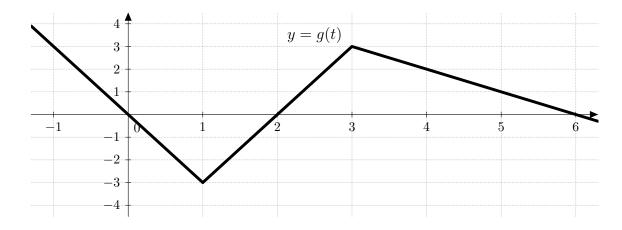
 K. (1 point) Inflection point(s) (x, y) :

L. (5 points) Sketch y = f(x) on the graph below.

2. (5 points each) Evaluate the following:


A.
$$\lim_{x \to \infty} \frac{6x^7 - 3x^2 + x + 1}{-5x^7 + 2x^3 + 8}$$

B.
$$\lim_{\theta \to 0} \frac{\sin(\theta^2) + \theta^2}{\theta^2} =$$

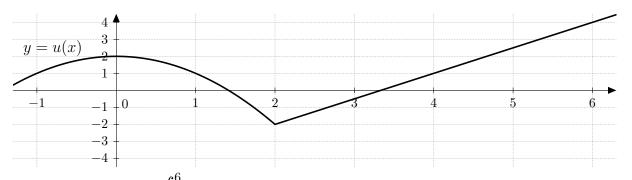

C.
$$\lim_{x \to \infty} \frac{x \ln(x) + 3}{e^x + x} =$$

D.
$$\int \left(x^{4/3} + 7\sin(x) + 3\cos(x)\right) dx =$$

E.
$$\int_0^1 (e^x + 2x) \, dx =$$

5. (7 points) Find $\frac{d}{dx} \int_0^{x^3} \sin(t^2) dt$.

- **6.** (4 points each) y = g(t) is plotted above. Let $A(x) = \int_0^x g(t) dt$. Find the following quantities.
 - **A.** A(2) =


B. A(-1) =

C. A'(4) =

7. (8 points) Find w(x) if $w'(x) = 3\sqrt{x} - 6x^2$ and w(0) = 8.

8. (10 points) Suppose that you have 24 meters of fencing to make three adjacent rectangular kennels of length x meters and width y meters (see the diagram below). Find the values of x and y that maximize the enclosed area. (Justify why your answer corresponds to an absolute maximum, and include units in your answer.)

	y	<i>y</i>	<i>y</i>]
x		x	x	x
	y	y	y	

9. (8 points) Estimate $\int_0^6 u(x) dx$ by computing R_3 , the Right-Endpoint Approximation with 3 subintervals. Also, illustrate the rectangles on the graph above.