Math 220

Math 220 Sample Midterm 1

Name: _____

Recitation instructor:

Recitation time:

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted. Please make sure that your cell phone is turned off.
- Read each question carefully and show your work.
- You will have 75 minutes to complete the exam.

Problem 1. Evaluate the following limits.

A.
$$\lim_{x \to 2} (x^3 + 2x + 1)$$

B.
$$\lim_{\theta \to \pi/2} \frac{\cos(\theta)}{\theta}$$

C.
$$\lim_{\theta \to 0} \frac{5(1 - \cos\theta)}{\theta}$$

Problem 2.

A.
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t - 1}$$

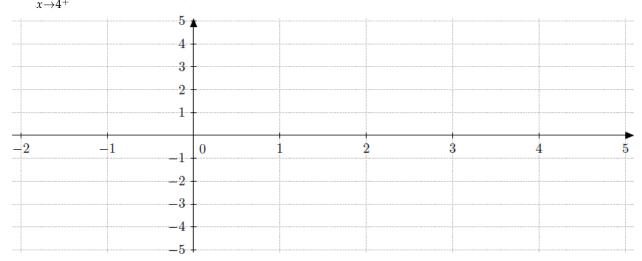
$$\mathbf{B.} \lim_{x \to 7} \frac{\sqrt{x+2}-3}{x-7}$$

Problem 3. Given that $\lim_{x\to 5} u(x) = 8$ and $\lim_{x\to 5} w(x) = 2$, find the following limits.

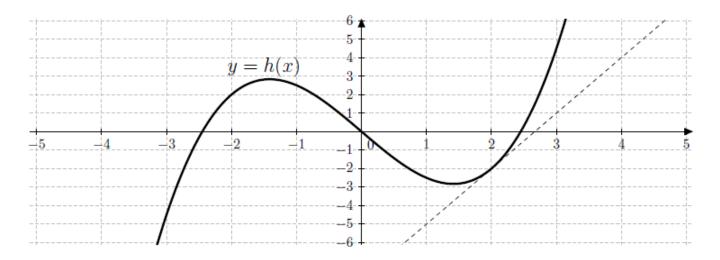
A.
$$\lim_{x \to 5} \frac{w(x)^2 - 9}{u(x)}$$

B.
$$\lim_{x \to 5} \frac{\sqrt{u(x) \cdot w(x)}}{x+5}$$

Problem 4. Use the squeeze theorem to find


$$\lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right)$$

Problem 5. Let


$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \neq 1\\ 6 & \text{if } x = 1. \end{cases}$$

Where is f(x) continuous/discontinuous?

Problem 6. Sketch the graph of a function k(x) that satisfies $\lim_{x\to 0} k(x) = 2$, $\lim_{x\to 4^-} k(x) = -2$, $\lim_{x\to 4^+} k(x) = 3$, and k(4) = 1.

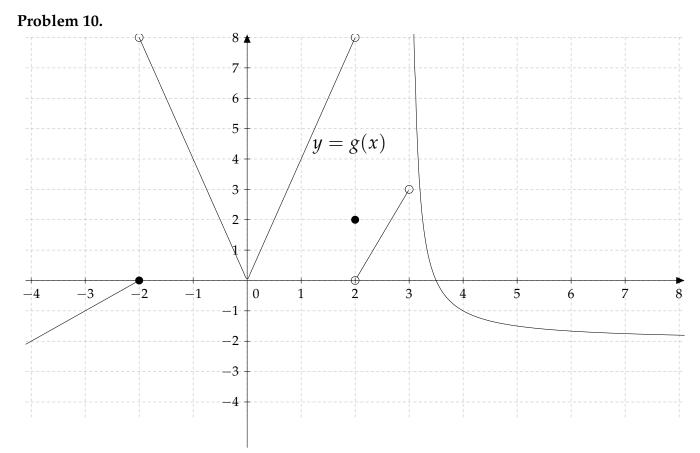
Problem 7.

The function y = h(x) is graphed above in solid bold. There is also a dotted line graphed. Find the following two values. [Answers are enough. No explanation is needed.]

A. h(2) =

B. h'(2) =

Problem 8. Suppose that an object is at position $s(t) = t^2 + 3$ feet at time *t* seconds.


A. Find the average velocity of the object over a time interval from time 3 seconds to time 3 + h seconds.

B. Find the instantaneous velocity of the object at time 3 seconds by taking the limit of the average velocity in Part A as $h \rightarrow 0$.

Problem 9. Let $v(x) = \frac{2}{x}$.

A. Find v'(1) by using one of the limit definitions of the derivative.

B. Find the equation of the tangent line to y = v(x) at x = 1.

State the value of each of the below quantities. If the quantity does not exist, write "does not exist" or "DNE". (Answers are enough. No explanation is needed.)

- **A.** $\lim_{x \to -2^{-}} g(x) =$ **D.** $\lim_{x \to 3^{+}} g(x) =$
- **B.** $\lim_{x \to -2^+} g(x) =$ **E.** $\lim_{x \to 3^-} g(x) =$
- **C.** $\lim_{x \to -2} g(x) =$ **F.** g'(1) =

G. List all discontinuities and classify

them as removable, infinite or jump