Math 220 Midterm 1

Name:		
Recitation instructor:		
Recitation time:		

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted. Please make sure that your cell phone is turned off.
- Read each question carefully and show your work.
- You will have 75 minutes to complete the exam.

Grading

1	/9	6	/4
2	/6	7	/10
3	/5	8	/10
4	/6	9	/10
5	/5	10	/15
	/	Total	/80

Problem 1. (9 points) Evaluate the following limits.

A. (3 points)
$$\lim_{x \to -1} \frac{x^2 + x + 3}{x - 4}$$

B. (3 points)
$$\lim_{x \to 1} [\ln(x+3) - 5x]$$

C. (3 points)
$$\lim_{\theta \to 0} \frac{4 \sin \theta}{\theta}$$

Problem 2. (6 points) Let

$$f(x) = \begin{cases} e^x + 1 & \text{if } x \neq 0 \\ 2 & \text{if } x = 0. \end{cases}$$

Where is f(x) continuous/discontinuous?

Problem 3. (5 points) Sketch the graph of a function k(x) that satisfies $\lim_{x\to 1} k(x) = 3$, $\lim_{x\to 3^-} k(x) = 1$, $\lim_{x\to 3^+} k(x) = -3$, and k(3) = -5.

Problem 4. (6 points) Given that $\lim_{x\to 2} u(x) = 4$ and $\lim_{x\to 4} w(x) = 3$, find the following limits.

A. (3 points)
$$\lim_{x \to 2} \frac{w(x)^2 + 1}{\sqrt{u(x)}}$$

B. (3 points)
$$\lim_{x \to 2} \frac{x^2}{u(x) + 3w(x)}$$

Problem 5. (5 points) Use the squeeze theorem to find

$$\lim_{x\to 2}g(x)$$

provided that the function w(x) satisfies $3x + 1 \le g(x) \le x^2 + 3$ for all $x \ne 2$.

Problem 6. (4 points)

The function y=w(x) is graphed above in solid bold. There is also a dotted line graphed. Find the following two values. [Answers are enough. No explanation is needed.]

A. (2 points)
$$w(-3) =$$

B. (2 points)
$$w'(-3) =$$

Problem 7. (10 points)

A. (5 points)
$$\lim_{t \to -3} \frac{t^2 - 2t - 15}{t + 3}$$

B. (5 points)
$$\lim_{x\to 5} \frac{1-\sqrt{x-4}}{x-5}$$

Problem 8. (10 points) Suppose that an object is at position $s(t) = 2t^2$ feet at time t seconds.

A. (3 points) Find the average velocity of the object over a time interval from time 1 seconds to time 1 + h seconds.

B. (7 *points*) Find the instantaneous velocity of the object at time 1 second by taking the limit of the average velocity in Part A as $h \to 0$.

Problem 9. (10 points) Let $v(x) = \frac{4}{x^2}$.

 A_{\bullet} (7 points) Find v'(2) by using one of the limit definitions of the derivative.

B. (3 *points*) Find the equation of the tangent line to y = v(x) at x = 2.

Problem 10. (15 points)

Consider the graph y = g(x) above. State the value of each of the below quantities (A - F: 2 points for each). If the quantity does not exist, write "does not exist" or "DNE". (Answers are enough. No explanation is needed.)

A.
$$\lim_{x \to -4^{-}} g(x) =$$

$$\mathbf{E.} \ \lim_{x \to -2} g(x) =$$

B.
$$\lim_{x \to -4^+} g(x) =$$

F.
$$g'(-3) =$$

$$\mathbf{C.} \lim_{x \to 1} g(x) =$$

G. (3 points) List all discontinuities and classify them as removable, infinite or jump.

$$\mathbf{D.} \lim_{x \to -1} g(x) =$$

					, i