Math 220 Spring 2024

## Math 220 Sample Midterm 3

| Name:                  |  |  |
|------------------------|--|--|
| Recitation instructor: |  |  |
| Recitation time:       |  |  |

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted.
- Read each question carefully and show your work unless explicitly told otherwise.

**Problem 1.** Let  $f(x) = x^4 - 2x^2$ .

(a) ( *points*) Find all critical numbers of f(x) on the interval  $(-\infty, \infty)$ .

(b) ( points) Find the absolute maximum and absolute minimum of f(x) on [-2,2].

Problem 2. In each of the following blanks, fill in "a local max", "a local min" or "neither (Note: "neither" means "neither a local max nor a local min") Also, no works need to be

shown.

**A.** If 
$$h'(3) = 0$$
 and  $h''(3) = 2$ , then  $h(x)$  has \_\_\_\_\_ at  $x = 3$ .

**B.** If 
$$h'(-2) = 0$$
 and  $h''(-2) = -11$ , then  $h(x)$  has \_\_\_\_\_ at  $x = -2$ .



Above is the graph of y = g'(x) to use for part C and D.

**C.** 
$$g(x)$$
 has \_\_\_\_\_\_ at  $x = -1$ .

**D.** 
$$g(x)$$
 has \_\_\_\_\_\_ at  $x = 1$ .

**Problem 3.** The function f(x) and its first and second derivatives are:

$$f(x) = \frac{x^2 - 9}{x^2 - 4}$$

$$f'(x) = \frac{10x}{(x^2 - 4)^2}$$

$$f'(x) = \frac{10x}{(x^2 - 4)^2} \qquad f''(x) = -\frac{10(3x^2 + 4)}{(x^2 - 4)^3}.$$

Find the information below about f(x), and use it to sketch the graph of f(x). When appropriate, write NONE. No work needs to be shown on this problem.

**A.** (point) Domain of f(x):

**B.** (point) *y*-intercept:

**C.** (point) *x*-intercept(s): \_\_\_\_\_\_

**D.** (point) Horizontal asymptote(s):

**E.** (point) Vertical asymptote(s):

**F.** (point) Interval(s) f(x) is increasing:

**G.** (point) Interval(s) f(x) is decreasing:

**H.** (0.5 point) Local maximum(s) (x,y):

**I.** (0.5 point) Local minimum(s) (x, y):

- **J.** (point) Interval(s) f(x) is concave up: \_\_\_\_\_\_
- **K.** (point) Interval(s) f(x) is concave down:
- **L.** (point) Inflection point(s) (x,y):
- **M.** Sketch y = f(x) on the graph below.



**Problem 4.** Find the following limits. (Use limit notation correctly.)

**A.** (points) 
$$\lim_{x\to\infty} \frac{x^2-1}{e^x+2}$$

**B.** (points) 
$$\lim_{x \to 1^+} (x-1)^{x-1}$$

C. (points) 
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 9}}{3x + 2}$$

**Problem 5.** Two airplanes are flying in the air at the same height: airplane A is flying east at 100 mi/h and airplane B is flying north at 200 mi/h. If they are both heading to the same airport, located 30 miles east of airplane A and 40 miles north of airplane B, at what rate is the distance between the airplanes changing? [**Include unit with your answer**]

## Problem 6.

If 12 ft<sup>2</sup> of material is available to make a box with square base and open top, find the largest possible volume for the box. [**Include unit with your answer**]

**Problem 7.** Let  $f(x) = \sin x$ .

**A.** ( *points*) Find the linearization for f(x) at  $x = \pi$ .

**B.** ( *points*) Use the linearization to approximate  $f(\pi + 0.02)$ .

**Problem 8.** The area A of a circle with radius r is given by  $A = \pi r^2$ . Find the differential dA.