Math 220 Spring 2024

Math 220 Sample Final Exam

Name: 5 o f n

Recitation instructor:

Recitation time:

* This is a closed-book, closed-notes exam. No calculators or electronic aids are per-
mitted.

* Read each question carefully and show your work unless explicitly told otherwise.



Problem 1. (15 points)
(3 points each) Evaluate the following;:
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Problem 2. (5 points) Using the limit definition of the derivative, find f'(1) if f(x) =

x2 — 5x.
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Problem 3. (10 points)

A. (5 points) Use implicit differentiation to find Z—Z for x —3x%y +y = €.
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B. (5 points) Use logarithmic differentiation to find Iy for y = x5,
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Problem 4. (3 points) (1 point each) For the function w(x), one has w” (x) =

Find the following:
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A. Interval(s) where w(x) is concave up:

B. Interval(s) where w(x) is concave down: { - 7')

®=Z

C. x-coordinate(s) where w(x) has an inflection point:

Problem 5. (6 points) (6 points) Use a linearization of u(x) = 12x!/3 at x = 8 to approxi-
mate 12(8.1)1/3.
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Problem 6. (6 points) Find the absolute minimum and maximum of w(x) = (x — 1)e* on

the interval [—1, 1].
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Problem 7. (8 points) Suppose that the length of a rectangle is decreasing at a rate of 5
m/s and the width is increasing at a rate of 10 m/s. How fast is the area changing when
the length is 10 m and the width is 30 m ? Is the area increasing or decreasing? (Include

units with your answer.)
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Problem 8. (7 points) A car rental agency rents 200 cars per day at a rate of 30 dollars
per day. For each 1 dollar increase in the daily rate, 5 fewer cars are rented. At what rate
should the cars be rented to produce the maximum income? (Make sure to justify why
your answer corresponds to the absolute maximum.)
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Problem 9. (12 points)
(6 points each) Evaluate the following:
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Note that WolframAlpha gives Arctan(2)/6 which is equivalent to the above answer.
This can be checked numerically (both are roughly 0.1845247863) or by considering the triangle: "E’

One can observe that
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Problem 10. (6 points) Suppose that a particle has position s(t) feet at time t seconds
and a velocity function s'(t) = sin> t cos t ft/s. Find the displacement (change in position)
from time t = 0 seconds to time t = 7 seconds. (Include units with your answer.)
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Problem 11. (5 points)
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y = h(x) is plotted above. Estimate / h(x)dx by using a Riemann sum with n = 4
0

D

subintervals, taking the sampling points to be right endpoints (the Right Hand Rule Ry).
Also, illustrate the rectangles on the graph above. (You do not need to evaluate.)
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Problem 12. (4 points)
A
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y = g(x) is plotted above. Evaluate the following definite integrals. You do not need to
show your work.
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Problem 13. (6 points) Set up the integral to find the area bounded between y = x* — 2x
and y = —x 4 6 between x = 0 and x = 4.
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Problem 14. (7 points) Find the volume of the solid obtained by rotating the region
bounded by y = x and y = x? around the x-axis.
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