Math 220 Spring 2024

## Math 220 Sample Final Exam

| Name:                  |  |  |
|------------------------|--|--|
| Recitation instructor: |  |  |
| Recitation time:       |  |  |

- This is a closed-book, closed-notes exam. No calculators or electronic aids are permitted.
- Read each question carefully and show your work unless explicitly told otherwise.

**Problem 1.** (*15 points*) (3 points each) Evaluate the following:

**A.** Use L'Hopital rule to evaluate  $\lim_{\theta \to 0} \frac{\cos(\theta^2) - 1}{\theta^2}$ .

**B.** 
$$\int \left( x^{-1/5} + \cos(x) + \frac{1}{x} \right) dx =$$

$$\mathbf{C.} \ \frac{d}{dx} \int_{x^3}^1 e^{\sin t} \, dt =$$

$$\mathbf{D.} \ \frac{d}{dx} \left( \frac{\tan(x)}{e^x + \ln(x)} \right) =$$

**E.** 
$$\frac{d}{dx} \left( \sin(5^x) \cdot \arctan(x) \right) =$$

**Problem 2.** (5 points) Using the limit definition of the derivative, find f'(1) if  $f(x) = x^2 - 5x$ .

## Problem 3. (10 points)

**A.** (5 points) Use implicit differentiation to find  $\frac{dy}{dx}$  for  $x - 3x^2y + y = e^x$ .

**B.** (5 points) Use logarithmic differentiation to find  $\frac{dy}{dx}$  for  $y = x^{\sec(x)}$ .

**Problem 4.** (3 *points*) (1 point each) For the function w(x), one has  $w''(x) = \frac{x-2}{\sqrt{x^2+2}}$ . Find the following:

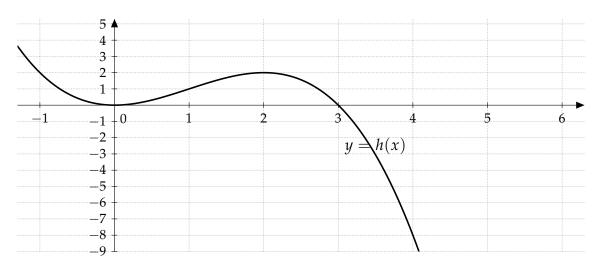
- **A.** Interval(s) where w(x) is concave up:
- **B.** Interval(s) where w(x) is concave down:
- C. x-coordinate(s) where w(x) has an inflection point:

**Problem 5.** (6 points) Use a linearization of  $u(x) = 12x^{1/3}$  at x = 8 to approximate  $12(8.1)^{1/3}$ .

**Problem 6.** (6 points) Find the absolute minimum and maximum of  $w(x) = (x-1)e^x$  on the interval [-1,1].

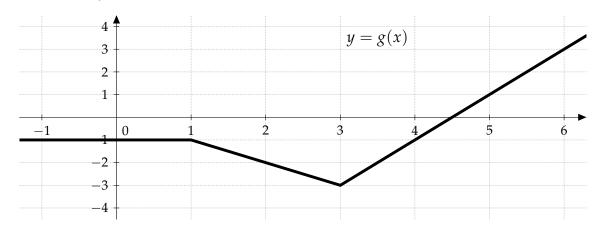
**Problem 7.** (8 points) Suppose that the length of a rectangle is decreasing at a rate of 5 m/s and the width is increasing at a rate of 10 m/s. How fast is the area changing when the length is 10 m and the width is 30 m? Is the area increasing or decreasing? (Include units with your answer.)

**Problem 8.** (7 *points*) A car rental agency rents 200 cars per day at a rate of 30 dollars per day. For each 1 dollar increase in the daily rate, 5 fewer cars are rented. At what rate should the cars be rented to produce the maximum income? (Make sure to justify why your answer corresponds to the absolute maximum.)


**Problem 9.** (*12 points*) (6 points each) Evaluate the following:

$$\mathbf{A.} \int \frac{\ln(x)^{3/2}}{x} \, dx$$

$$\mathbf{B.} \ \int_0^{1/5^{1/6}} \frac{x^2}{\sqrt{1-4x^6}} \, dx$$

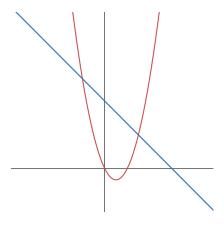

**Problem 10.** (6 points) Suppose that a particle has position s(t) feet at time t seconds and a velocity function  $s'(t) = \sin^3 t \cos t$  ft/s. Find the displacement (change in position) from time t=0 seconds to time  $t=\frac{\pi}{2}$  seconds. (Include units with your answer.)

## **Problem 11.** (*5 points*)



y=h(x) is plotted above. Estimate  $\int_0^4 h(x)\,dx$  by using a Riemann sum with n=4 subintervals, taking the sampling points to be right endpoints (the Right Hand Rule  $R_4$ ). Also, illustrate the rectangles on the graph above. (You do not need to evaluate.)

Problem 12. (4 points)




y = g(x) is plotted above. Evaluate the following definite integrals. You do not need to show your work.

i. 
$$\int_{2}^{0} g(x) dx =$$

ii. 
$$\int_1^4 g(x) \, dx =$$

**Problem 13.** (6 points) Set up the integral to find the area bounded between  $y = x^2 - 2x$  and y = -x + 6 between x = 0 and x = 4.



**Problem 14.** (7 *points*) Find the volume of the solid obtained by rotating the region bounded by y = x and  $y = x^2$  around the x-axis.