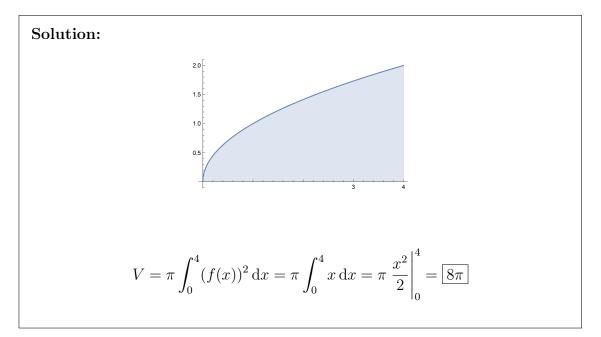
1. (a) (6 points) Draw the region bounded by the curves. Then, use the disk method to find the volume when the region is rotated around the x-axis.

$$f(x) = \sqrt{x}, \quad x = 0, \quad x = 4 \text{ and } y = 0.$$



(b) (6 points) Use shell method to find the volume generated when the region between the curves

 $y = \sqrt{x}, \quad y = x^2$ rotated around y-axis

Solution: These curves intersect at x = 0, 1. The volume is thus

$$V = \int_0^1 x(\sqrt{x} - x^2) \, \mathrm{d}x = \int_0^1 x^{3/2} - x^3 \, \mathrm{d}x$$
$$= \frac{2}{5}x^{5/2} - \frac{1}{4}x^4 \Big|_0^1 = \frac{2}{5} - \frac{1}{4} = \boxed{\frac{3}{20}}$$

2. (a) (6 points) Find the arclength of the function $f(x) = \frac{4}{3}x^{3/2}$ where $0 \le x \le 1$.

Solution:	
	$f' = \frac{4}{3} \cdot \frac{3}{2} x^{1/2} = 2x^{1/2}$
	$(f')^2 = 4x$
	$L = \int_0^1 \sqrt{1 + (f')^2} \mathrm{d}x$
	$= \int_0^1 \sqrt{1+4x} \mathrm{d}x$
	$= \left. \frac{1}{4} \frac{2}{3} (1+4x)^{3/2} \right _{0}^{1}$
	$= \boxed{\frac{1}{6}(5^{3/2} - 1)}$

(b) (6 points) Find the surface area of the volume generated by revolving the curve $y = x^2$ from (1, 1) to (3, 9) around the *y*-axis.

Solution:

$$SA = \int 2\pi x \, ds$$

$$= \int_{1}^{3} 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx$$

$$= \int_{1}^{3} 2\pi x \sqrt{1 + 4x^{2}} \, dx \qquad (u = 1 + 4x^{2}; du = 8x \, dx)$$

$$= \frac{\pi}{4} \int_{5}^{37} \sqrt{u} \, du$$

$$= \frac{\pi}{4} \frac{2}{3} \left[u^{3/2} \right]_{5}^{37}$$

$$= \left[\frac{\pi}{6} (37^{3/2} - 5^{3/2}) \right]$$

3. (12 points) Find the work required to pump all the water out of a cylinder that has a circular base of radius 5 ft and height 200 ft. Use the fact that the density of water is 62 lb/ft^3 .

Solution:	
	$force = vol \cdot density$
	$= 25\pi \mathrm{d}y \cdot 62$
	Work = \int force · distance
	$= \int_0^{200} 25\pi \cdot 62 \cdot (200 - y) \mathrm{d}y$
	$= 62(25)\pi \left[200y - \frac{y^2}{2} \right]_0^{200}$
	$= 62(25)\pi \left[200^2 - \frac{200^2}{2} \right]$
	$= 62(25)\pi \left[\frac{200^2}{2}\right]$
	$= 31(25)\pi \cdot 200^2 \text{ lb} \cdot \text{ft} = 31000000\pi \text{ lb} \cdot \text{ft}$

4. (12 points) Let R be the region bounded above by the graph of the function $f(x) = x^3$ and below by the x-axis from x = 0 to x = 3. Find the centroid of the region.

Solution:
$M = \int_0^3 x^3 \mathrm{d}x = \left. \frac{x^4}{4} \right _0^3 = \frac{81}{4}$
$M_x = \frac{1}{2} \int_0^3 (x^3)^2 \mathrm{d}x = \frac{1}{2} \left. \frac{x^7}{7} \right _0^3 = \frac{3^7}{14}$
$M_y = \int_0^3 x \cdot x^3 \mathrm{d}x = \left. \frac{x^5}{5} \right _0^3 = \frac{3^5}{5}$
$\overline{x} = \frac{M_y}{M} = \frac{3^5}{5} \cdot \frac{4}{3^4} = \frac{12}{5}$ $M_x = \frac{3^7}{4} = \frac{4}{54}$
$\overline{y} = \frac{M_x}{M} = \frac{3^7}{14} \cdot \frac{4}{3^4} = \frac{54}{7}$
The centroid is $\left(\frac{12}{5}, \frac{54}{7}\right)$

5. (a) (6 points) Find the derivative $\frac{\mathrm{d}}{\mathrm{d}x} (\tanh^{-1} x)^2$.

Solution: $2 \tanh^{-1} x \cdot \frac{1}{1-x^2}$

(b) (6 points) Determine the limit of the sequence or show that the sequence diverges. If it converges, find its limit.

$$a_n = \left(1 - \frac{2}{n}\right)^n$$

Solution: Letting $L = \lim_{n \to \infty} a_n$,

$$\ln L = \lim_{n \to \infty} n \ln \left(1 - \frac{2}{n} \right) = \lim_{n \to \infty} \frac{\ln \left(1 - \frac{2}{n} \right)}{n^{-1}}$$
$$\stackrel{L'H}{=} \lim_{n \to \infty} \frac{\frac{1}{1 - \frac{2}{n}} \cdot 2n^{-2}}{-n^{-2}}$$
$$= -2 \lim_{n \to \infty} \frac{1}{1 - \frac{2}{n}} = -2$$

Therefore $L = e^{-2}$