NAME _____

Rec. Instructor: _____

Signature _____

Rec. Time _____

CALCULUS II - EXAM 2 July 22, 2019

<u>Required to show work or make statements</u> for full credit. No books, notes or calculators are permitted. The point value of each problem is given in the left-hand margin. You have 75 minutes.

Problem	Points	Possible	Problem	Points	Possible
1		10	8		10
2		10	9		10
3		10	10		10
4		10	11		10
5		10			
6		10			
7		10			
· ·			Total Score		110

(10)**1.** Evaluate the series $\sum_{n=2}^{\infty} \left(\frac{4}{5}\right)^n$

(10)**2.** Find the minimum M that guarantees that

$$\left|\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{10n+2} - \sum_{n=1}^{M} \frac{(-1)^{n+1}}{10n+2}\right| < .001.$$

3. Determine the radius of convergence and interval convergence, but don't check the end points $\sum_{n=1}^{\infty} \frac{2^n}{n} (4x-8)^n$.

4. Show whether the series converges absolutely or conditionally or diverges. Name all tests used.

$$\sum_{n=6}^{\infty} (-1)^n \frac{4 + \sqrt{n}}{n^3 - 5n^2}$$

(10) **5.** Find the Taylor series for $f(x) = e^{-x}$ about x = -4

- (10)
 - **6.** Find the limit of the sequence or state that it diverges. $\lim_{n \to \infty} n^2 e^{-n}$

Determine whether the following series converge conditionally, converge absolutely, or diverge. Name all tests used.

(10)
7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{5/3}}$$

9. Find a power series representation for the following function and determine its interval of convergence $f(x) = -\frac{x}{2}$

$$f(x) = \frac{x}{5-x}.$$

10. Determine whether the following series converge conditionally, converge absolutely, or diverge. Name all tests used. $\sum_{n=1}^{\infty} \left(\frac{3n+1}{4-2n}\right)^n$

11. Solve the differential equation for initial conditions y(1) = 4 (Not required to solve for y).

 $\frac{dy}{dx} = x^2y - 3x^2$