- 1. Evaluate the following.
 - (a) (8 points) $\frac{d}{dx} x^3 \tanh^{-1}(e^{2x})$, where \tanh^{-1} is the inverse tanh function. Solution: $3x^2 \tanh^{-1}(e^{2x}) + x^3 \frac{1}{1 - (e^{2x})^2} \cdot e^{2x} \cdot 2$

(b) (8 points)
$$\int (2 + \cosh x)(1 + \sinh x) dx$$

Solution:

$$\int (2 + \cosh x)(1 + \sinh x) dx$$

= $\int (2 + 2 \sinh x + \cosh x + \sinh x \cosh x) dx$
= $2x + 2 \cosh x + \sinh x + \int \sinh x \cosh x dx$ $\begin{pmatrix} u = \sinh x; \\ du = \cosh x dx \end{pmatrix}$
= $2x + 2 \cosh x + \sinh x + \int u du$
= $2x + 2 \cosh x + \sinh x + \frac{u^2}{2}$
= $2x + 2 \cosh x + \sinh x + \frac{(\sinh x)^2}{2} + C$

Remark: Alternatively, the *u*-sub can be performed with $u = \cosh x$, $du = \sinh x \, dx$. The final result will have the term $\frac{(\cosh x)^2}{2}$ instead of $\frac{(\sinh x)^2}{2}$. These are off by a constant since $\cosh^2 x - \sinh^2 x = 1$.

 $\left| \frac{5}{3} \right|$

2. Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{\ln y}$$

(a) (8 points) Find the general solution. Solve for y explicitly.

Solution:

$$\int \frac{\ln y}{y} \, dy = \int x \, dx$$

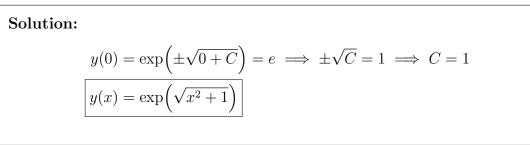
$$\frac{(\ln y)^2}{2} = \frac{1}{2}x^2 + C_1$$

$$(\ln y)^2 = x^2 + C_2$$

$$\ln y = \pm \sqrt{x^2 + C_2}$$

$$y(x) = \exp\left(\pm \sqrt{x^2 + C}\right)$$

(b) (2 points) Find the solution satisfying the initial condition y(0) = e where e is the natural log base.



3. (6 points) Find the limit of the sequence or state that it diverges.

(a) (6 points)
$$\lim_{n \to \infty} e^{-2n}(n^2 + 1)$$

Solution:

$$\lim_{n \to \infty} \frac{n^2 + 1}{e^{2n}} \stackrel{LH}{=} \lim_{n \to \infty} \frac{2n}{2e^{2n}} \stackrel{LH}{=} \lim_{n \to \infty} \frac{2}{4e^{2n}} = \boxed{0}$$

(b) (6 points)
$$\lim_{n \to \infty} \frac{\sin(5/n)}{\sin(3/n)}$$

Solution:

 $\lim_{n \to \infty} \frac{\sin(5/n)}{\sin(3/n)} \stackrel{LH}{=} \lim_{n \to \infty} \frac{\cos(5/n) \cdot -5n^{-2}}{\cos(3/n) \cdot -3n^{-2}} = \lim_{n \to \infty} \frac{5\cos(5/n)}{3\cos(3/n)} =$

4. Evaluate the series.

(a) (6 points)
$$\sum_{n=0}^{\infty} \frac{5}{2} \cdot \left(\frac{2}{5}\right)^n = \frac{5}{2} + 1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \cdots$$

Solution: Geometric series with first term $a = \frac{5}{2}$ and ratio $r = \frac{2}{5}$. Sum is

$$\frac{a}{1-r} = \frac{\frac{5}{2}}{1-\frac{2}{5}} = \frac{5}{2} \cdot \frac{5}{3} = \boxed{\frac{25}{6}}$$

(b) (8 points) $\sum_{n=2}^{\infty} \frac{2}{n^2 - n}$

Solution: $\sum_{n=2}^{\infty} \frac{2}{n^2 - n} = \sum_{n=2}^{\infty} \left(\frac{2}{n - 1} - \frac{2}{n} \right)$ $= \left(\frac{2}{1} - \frac{2}{2} \right) + \left(\frac{2}{2} - \frac{2}{3} \right) + \left(\frac{2}{3} - \frac{2}{4} \right) + \cdots$ $= \boxed{2}$

5. (7 points) Use the limit comparison test to determine whether the following series converges or diverges. Show all work to justify your answer. $\sum_{n=1}^{\infty} \frac{n^2 - n}{3n^{5/2} + 217}$

Solution: Compare against
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$$
$$\lim_{n \to \infty} \frac{\frac{n^2 - n}{\frac{3n^{5/2} + 217}{\frac{1}{n^{1/2}}}}{\frac{1}{n^{1/2}}} = \lim_{n \to \infty} \frac{n^{5/2} - n^{3/2}}{3n^{5/2} + 217} = \frac{1}{3}$$
and
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$$
diverges by *p*-series test. So by the Limit Comparison Test,
$$\sum_{n=1}^{\infty} \frac{n^2 - n}{3n^{5/2} + 217}$$
diverges

6. Determine whether the following series converge or diverge. Show all work to justify your answers.

(a) (7 points)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

Solution: Diverges by the *p*-series test $(p = \frac{1}{2} < 1)$
(b) (7 points) $\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$
Solution: Converges by the integral test: $f(x) = \frac{1}{x(\ln x)^2}$ is positive, continuous, and decreasing for $x \ge 2$, and
 $\int_{2}^{\infty} \frac{1}{x(\ln x)^2} dx = \int u^{-2} du = -u^{-1} = -\frac{1}{\ln x}\Big|_{2}^{\infty} = -0 + \frac{1}{\ln 2}$ converges

(c) (7 points) $\sum_{n=1}^{\infty} (-1)^{n+1} \cos(n\pi/2)$

 ∞

Solution: Diverges by divergence test, since $\lim_{n\to\infty} (-1)^{n+1} \cos(n\pi/2)$ does not exist (the sequence cycles between the values 0, 1, 0, and -1)

7. (6 points) The infinite series $S = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n-1}$ is estimated using the *M*-th partial sum S_M . Find the minimum *M* that guarantees that $|S - S_M| < 0.01$.

Solution: This is an alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, with $a_n = \frac{1}{3n-1}$. The estimate for error is $|S - S_M| < a_{M+1}$. We want $\frac{1}{3(M+1)-1} < 0.01 = \frac{1}{100} \implies 100 < 3(M+1) - 1$ $\implies \frac{101}{3} - 1 < M$ $\implies M > \frac{98}{3} \approx 32.66$ so M = 33 works. 8. Determine whether the following series converge conditionally, converge absolutely, or diverge. Justify your answer.

(a) (7 points)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Solution: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (harmonic series).
 $\lim_{n \to \infty} \frac{1}{n} = 0$ and $\frac{1}{n+1} \le \frac{1}{n}$ for $n \ge 1$, so by the Alternating Series Test,
 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.
Thus $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges conditionally
(b) (7 points) $\sum_{n=1}^{\infty} \frac{\sin(2n)}{n^2 + n}$

Solution:

$$\sum_{n=1}^{\infty} \left| \frac{\sin(2n)}{n^2 + n} \right| \le \sum_{n=1}^{\infty} \frac{1}{n^2 + n} \le \sum_{n=1}^{\infty} \frac{1}{n^2}$$
The rightmost series converges by *p*-series test (*p* = 2 > 1).
Hence by Direct Comparison Test,
$$\sum_{n=1}^{\infty} \left| \frac{\sin(2n)}{n^2 + n} \right|$$
 converges.
Thus by definition,
$$\sum_{n=1}^{\infty} \frac{\sin(2n)}{n^2 + n}$$
 converges absolutely