Name:	
Recitation time:	Rec. instructor:

MATH 221 - Final December 15, 2021

- This exam contains 12 pages (including this cover page) and 13 questions.
- No books, calculators, or notes are allowed. You must show all your work to get credit for your answers.
- $\bullet\,$ You have 1 hour and 50 minutes to complete the exam.

Question	Points	Score
1	22	
2	22	
3	8	
4	16	
5	12	
6	12	
7	18	
8	18	
9	14	
10	12	
11	18	
12	16	
13	12	
Total:	200	

$$\frac{d}{dx}\tan x = \sec^2 x \qquad \frac{d}{dx}\sec x = \sec x \tan x \qquad \frac{d}{dx}b^x = b^x \ln b$$

$$\int \tan x \, dx = \ln |\sec x| + C \qquad \int \sec x \, dx = \ln |\sec x + \tan x| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C, \quad \int \frac{dx}{a^2 + x^2} = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C, \quad \int \frac{1}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \sin^n(x) \, dx = -\frac{\sin^{n-1}(x)\cos(x)}{n} + \frac{n-1}{n} \int \sin^{n-2}(x) \, dx$$

$$\int \cos^n(x) \, dx = \frac{\cos^{n-1}(x)\sin(x)}{n} + \frac{n-1}{n} \int \cos^{n-2}(x) \, dx$$

$$\int \tan^n(x) \, dx = \frac{\tan^{n-1}(x)}{n-1} - \int \tan^{n-2}(x) \, dx$$

$$\int \sec^n(x) \, dx = \frac{\sec^{n-2}(x)\tan(x)}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2}(x) \, dx$$

$$M_x = \frac{1}{2} \int_a^b f(x)^2 - g(x)^2 dx \qquad M_y = \int_a^b x(f(x) - g(x)) dx$$

$$L = \int_a^b \sqrt{1 + (dy/dx)^2} dx , \quad SA = \int_a^b 2\pi r \sqrt{1 + (dy/dx)^2} dx$$

$$|R_n(x)| \le \frac{K}{(n+1)!} |x - a|^{n+1}, \quad \text{with } K = \max_{a \le c \le x} |f^{(n+1)}(c)|.$$

$$\frac{1}{1-x} = \sum_{n=0}^\infty x^n , \quad e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, \quad \ln(1+x) = \sum_{n=1}^\infty \frac{(-1)^{n+1} x^n}{n}$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!}$$

$$A = \int_a^b y(t) x'(t) dt , \quad L = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$$

$$A = \frac{1}{2} \int_a^b r^2 d\theta , \quad L = \int_a^b \sqrt{r(\theta)^2 + r'(\theta)^2} d\theta$$

1. Evaluate the following integrals

(a) (11 points)
$$\int 5x \ln(4x) dx$$

(b) (11 points)
$$\int \frac{2x^2 - 1}{x^3 + x^2} dx$$

2. Evaluate the following integrals

(a) (11 points)
$$\int \frac{e^x}{1 + e^{2x}} dx$$

(b) (11 points)
$$\int \tan(x) \sec^4(x) dx$$

3. (8 points) Set up the integral that computes the area of the surface obtained by rotating the curve $y = \sqrt{1 - x^2}$, $-1 \le x \le 1$ around the x-axis. **Do not evaluate the integral.**

4. Let R be the region trapped between y=1 and $y=\cos x$, with $0 \le x \le \frac{\pi}{2}$.

(a) (6 points) Find the area of the region R.

(b) (10 points) Find \bar{x} , the x coordinate of the centroid of R. (Do not calculate \bar{y})

5. (12 points) Find the general solution of the differential equation $\frac{dy}{dx}=3x^2y^2$.

6. (12 points) Use the integral test to determine if the series $\sum_{n=2}^{\infty} \frac{1}{n \ln^2(n)}$ converges or diverges.

7. Determine if the following series converge or diverge

(a) (9 points)
$$\sum_{n=1}^{\infty} \frac{7n-5}{n^3+n+1}$$

(b) (9 points) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$

8. (a) (9 points) Evaluate the series $\sum_{n=0}^{\infty} \frac{2^n + 4}{3^n}$.

(b) (9 points) Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ converges absolutely, conditionally or diverges.

9. (14 points) Find the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2 4^n}$$

10. (12 points) Find the degree two Taylor polynomial of $f(x) = \ln(5x)$ centered at x = 1.

11. Using the appropriate series from the formula sheet, find the Maclaurin series of:

(a) (9 points)
$$f(x) = \frac{x^3}{1 - x^2}$$

(b) (9 points)
$$g(x) = \int \frac{\sin x}{x} dx$$

- 12. Consider the curve with parametric equations $x=e^t+2,\ y=2e^t+5$ for $-1\leq t\leq 1.$
 - (a) (5 points) Find the slope of the curve at a general value of t.

(b) (5 points) Find the equation of the tangent line to the curve at t = 0.

(c) (6 points) Find the length of the curve.

13. (12 points) Calculate the area bounded by one petal of the rose $r = 4 \sin 3\theta$.