Name:	
Recitation time:	Rec. instructor:

MATH 221 - Midterm 3 April 4, 2023

- This exam contains 7 pages (including this cover page) and 6 questions.
- Answer the questions in the spaces provided in this booklet.
- No books, calculators, or notes are allowed. You must show all your work to get credit for your answers.
- You have 1 hour and 15 minutes to complete the exam.

Question:	1	2	3	4	5	6	Total
Points:	16	16	16	18	16	18	100
Score:							

$$\cosh^{2}(x) - \sinh^{2}(x) = 1, \quad \cosh^{2}(x) = \frac{1 + \cosh(2x)}{2}, \quad \sinh(2x) = 2\sinh(x)\cosh(x)$$

$$\frac{d}{dx}(\sinh x) = \cosh x, \quad \frac{d}{dx}(\cosh x) = \sinh x, \quad \frac{d}{dx}(\tanh x) = \operatorname{sech}^{2}x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{csch}^{2}x, \quad \frac{d}{dx}(\operatorname{sech}x) = -\operatorname{sech}x\tanh x, \quad \frac{d}{dx}(\operatorname{csch}x) = -\operatorname{csch}x\coth x$$

$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1 + x^{2}}}, \quad \frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^{2} - 1}}, \quad \frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1 - x^{2}}$$

$$\frac{d}{dx}(\operatorname{sech}^{-1}x) = \frac{-1}{x\sqrt{1 - x^{2}}}, \quad \frac{d}{dx}(\coth^{-1}x) = \frac{1}{1 - x^{2}}, \quad \frac{d}{dx}(\operatorname{csch}^{-1}x) = \frac{-1}{|x|\sqrt{1 + x^{2}}}$$

1. (a) (8 points) Prove the following identity

$$\sinh^2(x) = \frac{\cosh(2x) - 1}{2}$$

(b) (8 points) Calculate the following integral

$$\int \sinh^2(x) \cosh^3(x) \, dx$$

2. Consider the differential equation

$$\frac{dy}{dx} = x^4 y^2.$$

(a) (12 points) Find the general solution to the differential equation

(b) (4 points) Find the particular solution satisfying y(0) = 10.

3. (a) (8 points) Evaluate the limit of the sequence $\lim_{n} \frac{n^2}{2e^n}$.

(b) (8 points) Use the squeeze theorem to calculate $\lim_{n} \frac{3n - \cos(n)}{2n}$.

4. Evaluate the series:

(a) (9 points)
$$\sum_{n=1}^{\infty} \frac{(-1)^n + 2^n}{7^{n-1}}$$

(b) (9 points)
$$\sum_{n=3}^{\infty} \frac{1}{n(n-1)}$$
. Hint: Use partial fractions.

5. Determine whether the following series converge or diverge. Show all work to justify your answers.

(a) (8 points)
$$\sum_{n=1}^{\infty} \frac{2n-1}{n^4 - n^2 + 7}$$

(b) (8 points) $\sum_{n=1}^{\infty} e^{1/n^2}$

6. Determine whether the following series converge conditionally, converge absolutely, or diverge. Justify your answer.

(a) (9 points)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+5}$$

(b) (9 points)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin(n)}{n^2}$$