1. Find the gradient of the following functions:
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2. A certain differentiable function satisfies:
(a) f(2,5) =12, and f(3,—4) = —6.
(b) Vf(2,5)=(6,8), and Vf(3,—4) = (—5,12).

At each of the two points in question (i.e. at (2,5) and at (3,—4))
answer the following questions:

(a) In what direction is the function increasing the fastest and what
is the rate of change in that direction?
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(b) What is the directional derivative in the direction of < 3,4 >7?
(Note: just to be completely clear about semantics here, you are
supposed to give the same directional derivative at each point. I
did not ask for the directional derivative in the direction of the
point (3,4).)
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(c) What is the tangent plane and/or the linear approximation at
each of the two points?
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3. Set up but do not solve the following problems. As part of setting
these problems up, you should list the unknowns and the equations
that you would need to use to find them. You should also do all of the
derivative calculations.

(a) Maximize f(z,y) = ze®¥" — ysin(zy)
Subject to g(z,y) = 2° + y® + 3zy — 42%y® = 1000 .
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| (b) Maximize F(z,y,z) = LQy‘z’l g unlnrown ¢
Subject to G(z,y, 2) = 2% + 3% + 2% = 10? : A
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4. For the curve 7(t) = (sin(3t), cos(3t), 4t), find the unit tangent, the
unit normal, the unit binormal, the curvature, and the tangential and
the normal acceleration vectors.
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5. For the function f(z,y) = 2z%y + 16y + 22 + 20y? find and classify all
of the critical points.
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6. Find the maximum and the minimum of the function
flz,y) =2 =2z 4+ + 2%
in the region given by
glz,y) = 22 +4° < 18.

Show your work carefully in this problem.
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7. Short answers ...

(a) If fisafunction of z, y, and z, and z, y, and z, are each functions
of ¢, r, s, and ¢, then what is
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(b) Which has larger curvature, a circle with radius 3 or a circle with
radius 307

The cirde w/ r=3 has laraer curvaluce

(c) What is the curvature of a circle with radius 77
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(d) Give the definition of what it means for a function to be continuous
at a point.
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(e) For the set 7% + y* + 2% + xyz = 2 write down the tangent plane

at the point R-/’\C.i, (X,)',Z)
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