Short answer questions.

¢
1. (6) Find both first partial derivatives of f{z,y) =9 = * ikl |
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2. (9) Find the gradient of g(z,y,2) = zyz — 2% at (2,1,-1)
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3. (9) Find the arc length of the curve r(t) = (3sin(f) — 1, -3 cos(2),4f) for 0 <t < 2.
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Short answer questions, continued.
4. (8) Find the indicated limit, or explain why it does not exist:
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5. {8) Find the indicated Hmit, or explain why it does not exist:
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Yet more short answer questions,

6. (6) Set up, but do not evaluate, a definite integral whose value is the arc length of the
ellipse .
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Hint: the ellipse is given parametrically by r() = 5 cos(¢)i + 4sin(t)] for t € [0, 2x).
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7. {6} Find the linearization of the function f(z,,2) = /7 + zz at the point (1,1,2).
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8. (12) Match the following graphs to the formula of the function of which they are the graph
by putting the Roman numeral of the graph in the space provided next to the equation.
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9. (16) Find the curvature of the curve f(£) = t*1 4 #j + ¢k at the point (1,1,1).:‘-?{\)
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10. (16} A particle is moving counter-clockwise around the circle of radiuvs 5 about the origin -
with speed given by v(t) =1 — e~

(a) Find ex(t), the magnitude of the tangential component of the acceleration as a
function of time.
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(b) Find an(t}, the magnitude of the normal component of the acceleration as a function
of time.
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(c) When the particle is located at (3, 4) what is the unit tangent vector to its trajectory?
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{d) When the particle is located at (3,4) what is the (principal) unit normal vector to
its trajectory?
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11. (24) Consider the vector-valued function r(£) = (2 cos(t), 2sin(t), 3£ as a trajectory (i.e.

giving the position of a particle at time ¢, say in seconds, after some chosen time ¢ =0 as
a displacement from the origin in some units, say meters).

(a) Find the velocity, speed, and acceleration functions.
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{b) Find the function giving the unit tangent vector to the trajectory at each point in
time and its derivative.
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(d) Express the &cceleratlon as the sum of two vectors, one a1 parallel to the velocity
{whose magnitude gives the change in speed) the other ayy orthogonal to the velocity.
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