MATH 222 CALCULUS 3 SUMMER 2014: EXAM 1

Name: _____

Instructor: _____

To receive credit you must show your work.

Problem 1. The points $P = (2, -\sqrt{2}, -1)$, Q = (1, 0, -2) and $R = (1, -\sqrt{2}, -1)$ determine a triangle in 3-space.

a)(10 points) Find out all three angles in degree.

Solution: $\vec{PQ} = Q - P = \langle -1, \sqrt{2}, -1 \rangle$, $\vec{PR} = R - P = \langle -1, 0, 0 \rangle$, $\vec{QR} = R - Q = \langle 0, -\sqrt{2}, 1 \rangle$. Thus $\cos \angle QPR = \frac{PQ \cdot \vec{PR}}{|\vec{PQ}||\vec{PR}|} = \frac{1}{2}$, $\cos \angle PQR = \frac{QP \cdot \vec{QR}}{|\vec{QP}||\vec{QR}|} = \frac{\sqrt{3}}{2}$, $\cos \angle QRP = \frac{RQ \cdot \vec{RP}}{|\vec{RQ}||\vec{RP}|} = 0$. Therefore $\angle QPR = \frac{\pi}{3}$, $\angle PQR = \frac{\pi}{6}$, $\angle QRP = \frac{\pi}{2}$.

b)(10 points) Let S = (0, 0, -2). Check whether these four points P, Q, R and S are in the same plane.

Solution: First find out the equation of the plane through *P*, *Q* and *R*. $\vec{\mathbf{n}} = \vec{PQ} \times \vec{PR} = < 0, 1, \sqrt{2} >$. Thus the equation is

$$y + \sqrt{2}z = -2\sqrt{2}.$$

Plug S = (0, 0, -2) into the above equation. The equation holds. Then S is on the plane *PQR*. Thus these four points are in the same plane.

Problem 2. Compute the following:

(1) (10 points)

$$\frac{d}{dt}(< t^2, cos(t), 1 > \times < 0, ln(t), arctan(t) >);$$

Solution:

$$\begin{aligned} &\frac{d}{dt}(< t^{2}, cos(t), 1 > \times < 0, ln(t), arctan(t) >) \\ &= \frac{d}{dt} < cos(t)arctan(t) - ln(t), -t^{2}arctan(t), t^{2}ln(t) > \\ &= < -sin(t)arctan(t) + \frac{cos(t)}{1 + t^{2}} - \frac{1}{t}, -2tarctan(t) - \frac{t^{2}}{1 + t^{2}}, 2tln(t) + t > . \end{aligned}$$

(2) (10 points) Let $\mathbf{x}(t) = \langle -\cos(t), \sin(t), 1 \rangle$ and $\mathbf{y}(t) = \langle -\sin(t), \cos(t), 0 \rangle$: $\lim_{t \to 0} ||4\mathbf{x}(t) - 2\mathbf{y}(t)||;$ Solution: $\lim_{t \to 0} x(t) = \langle -1, 0, 1 \rangle$, and $\lim_{t \to 0} y(t) = \langle 0, 1, 0 \rangle$. Thus

$$\lim_{t \to 0} ||4\mathbf{x}(t) - 2\mathbf{y}(t)|| = ||4 < -1, 0, 1 > -2 < 0, 1, 0 > || = || < -4, -2, 4 > || = 6.$$

Problem 3. (10 points) Find the intersection points of the surface $x = 2y^2 - 2z^2$ and the curve $\mathbf{r}(t) = (4e^{t^2})\mathbf{i} + (1 + \frac{e^{2t-1}}{2})\mathbf{j} + (1 - \frac{e^{2t-1}}{2})\mathbf{k}$.

Solution: Since
$$x = 2y^2 - 2z^2$$
 and $x = 4e^{t^2}$, $y = 1 + \frac{e^{2t-1}}{2}$, $z = 1 - \frac{e^{2t-1}}{2}$, we have
 $4e^{t^2} = 2(1 + \frac{e^{2t-1}}{2})^2 - 2(1 - \frac{e^{2t-1}}{2})^2$.

The right hand side can be simplified to

$$2(1 + \frac{e^{2t-1}}{2})^2 - 2(1 - \frac{e^{2t-1}}{2})^2 = 2(1 + \frac{e^{4t-2}}{4} + e^{2t-1}) - 2(1 + \frac{e^{4t-2}}{4} - e^{2t-1})$$
$$= 4e^{2t-1}.$$

Thus we have $4e^{t^2} = 4e^{2t-1}$, which implies $t^2 = 2t - 1$. Then t = 1. Therefore the intersection point is $\langle 4e, 1 + e/2, 1 - e/2 \rangle$.

Problem 4. (10 points) Convert from cylindrical to spherical coordinates.

$$(2, \frac{\pi}{4}, 1).$$

Solution: First change from cylindrical coordinates to rectangle coordinates. r = 2, $t = \frac{\pi}{4}$, z = 1. Then $x = rcos(t) = 2cos(\frac{\pi}{4}) = \sqrt{2}$, $y = rsin(t) = \sqrt{2}$.

Then change from rectangle coordinates to spherical coordinates. $\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{5}$, $tan(\theta) = \frac{y}{x} = 1$, $cos(\phi) = \frac{z}{\rho} = \frac{1}{\sqrt{5}}$. So the spherical coordinates is $<\sqrt{5}$, $\frac{\pi}{4}$, $arccos\frac{1}{\sqrt{5}} >$.

Problem 5. Let $\vec{\mathbf{r}(t)} = \langle sin(t), -cos(t), t \rangle$ be a curve in 3-space.

a)(10 points) Find out the equation for the tangent line of this curve at the point where t = 0.

Solution: $\mathbf{r}'(\vec{0}) = <1, 0, 1 > \mathbf{r}(\vec{0}) = <0, -1, 0 >$. Thus the equation for the tangent line is < x, y, z > = <0, -1, 0 > +t < 1, 0, 1 >.

b)(10 points) Find out the arc length function with the starting point where t = 0, and find out the arc length parametrization of the curve.

Solution:

$$s(t) = \int_0^t \|\mathbf{r}(t)'\| dt = \int_0^t \sqrt{\cos^2(t) + \sin^2(t) + 1} dt = \sqrt{2}t.$$

Thus the arc length parametrization of the curve is $\mathbf{r_1}(s) = \langle sin(\frac{s}{\sqrt{2}}), -cos(\frac{s}{\sqrt{2}}), \frac{s}{\sqrt{2}} \rangle$

c)(10 points) Compute the curvature at the point t = 0. Solution: $\mathbf{r}(\vec{0})' = \langle \cos(0), \sin(0), 1 \rangle = \langle 1, 0, 1 \rangle, \mathbf{r}(\vec{0})'' = \langle -\sin(0), \cos(0), 0 \rangle = \langle 0, 1, 0 \rangle$. Then $\kappa = \frac{\|\mathbf{r}(\vec{0})' \times \mathbf{r}(\vec{0})''\|}{\|\mathbf{r}(\vec{0})'\|^3} = \frac{1}{2}$. d)(10 points) Find the decomposition of $\vec{\mathbf{a}}(t)$ (which is the acceleration vector of $\vec{\mathbf{r}}(t)$) into tangential and normal components at t = 0.

Solution: $\vec{\mathbf{v}} = \mathbf{r}'(\vec{0}) = <1, 0, 1>, \vec{\mathbf{a}} = \mathbf{r}''(\vec{0}) = <0, 1, 0>. \vec{\mathbf{T}} = \frac{\vec{\mathbf{v}}}{\|\vec{\mathbf{v}}\|} = <\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}>.$ $a_T = \vec{\mathbf{a}} \cdot \vec{\mathbf{T}} = 0. \ \vec{\mathbf{a}}_{\mathbf{N}} = \vec{\mathbf{a}} - \vec{\mathbf{T}} = <0, 1, 0>. \ a_N = \|\vec{\mathbf{a}}_{\mathbf{N}}\| = 1. \ \vec{\mathbf{N}} = \frac{\vec{\mathbf{a}}_{\mathbf{n}}}{a_N} = <0, 1, 0>.$ Then $\vec{\mathbf{a}} = 0\vec{\mathbf{T}} + 1\vec{\mathbf{N}}.$