MATH 222 CALCULUS 3 SUMMER 2014: FINAL

Name: _____

Instructor: _____

To receive credit you must show your work.

Problem 1. (30 points) Compute the limit, or show it doesn't exist:

 $\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^4+y^4}.$

Problem 2. (30 points) Compute the limit, or show it doesn't exist:

$$\lim_{(x,y)\to(0,0)}\sin(\frac{x^3+2\pi y^4\sin(x)}{x^3+y^3})(y^{15}+2x^{23}).$$

Problem 3. (30 points) \mathcal{R} is the region bounded by the circle $x^2 + y^2 = 1$. Classify the critical points inside \mathcal{R} (without the boundary) and find the largest and the smallest value of $f(x, y) = x^4 + y^4$ in \mathcal{R} (including the boundary).

Problem 4. Do the required transformations, but **DO NOT CALCULATE**. a)(10 points) Change the order of the integration:

$$\int_0^1 \int_{-x^2}^{x^2} \frac{\sin(x+y^2)}{\cos^3(xy)} dy dx.$$

Do the required transformations, but **DO NOT CALCULATE**. b)(10 points) Use spherical coordinates to state the integration:

$$\int \int \int_{V} \sqrt{x^2 + y^2 + z^2} dx dy dz$$

where V is the region bounded by $x^2 + y^2 + z^2 \le 4$ and $z \ge \sqrt{x^2 + y^2}$.

Do the required transformations, but DO NOT CALCULATE.

c)(10 points) Let u = x + y and v = x - y. Use change of variables formula to write down the integration:

where *D* is the region bounded by $-1 \le x + y \le 4$ and $-2 \le x - y \le 3$.

Problem 5. (30 points) Compute the area of the region bounded by

$$\frac{(x-1)^2}{4} + \frac{(y-1)^2}{25} = 1.$$

Problem 6. (30 points) Compute the area of the parallelogram bounded by y = 2x, $y = \frac{1}{2}x$, y = 2x - 3 and $y = \frac{1}{2}x + \frac{3}{2}$.

Problem 7. (30 points) Find out the equation of the tangent plane of surface $x^2 + y^2 - z^2 - 6x + 4z + 4 = 0$ at the point (4, 2, 4).

Problem 8. (30 points) Compute the line integral:

$$\oint_C (\sqrt{1+x^5} + 2y)dx + (4x - e^{y^2})dy,$$

where *C* is $x^2 + y^2 = 4$ oriented counterclockwise.

Problem 9. (30 points) Compute the line integral:

$$\int_C (x^3 + y + 2z)dx + (x + 3z)dy + (2x + 3y)dz,$$

where C is x = 2sin(t), y = 2cos(t), z = 3t and t is from 2π to 0.

Problem 10. (30 points) Compute the line integral:

$$\oint_C xdx + zdy,$$

where *C* is the triangle whose vertices are (1, 0, 0), (0, 1, 0) and (0, 0, 1), and the orientation is $(1, 0, 0) \rightarrow (0, 1, 0) \rightarrow (0, 0, 1) \rightarrow (1, 0, 0)$.