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1. Here is a vector which you can assume has unit length:

Call this vector u. Now using the same base point draw a vector w (and label it) so
that the following are all satisfied:

(a) |w| = 1.

(b) u×w points toward you

(c) u×w ≈
√
3/2. (Try to make it as close as you can.)

Next using the same base point again draw a vector v (and label it) so that the following
are all satisfied:

(a) |v| = 1.

(b) u · v ≈ −1/2. (Again, do your best to get equality.)

(c) u× v points toward you.

Solution:

u×w = ∥u∥∥w∥ sin θ =
√
3/2 =⇒ θ = 60◦

u · v = ∥u∥∥v∥ cos θ = −1/2 =⇒ θ = 120◦

so the final configuration looks like

u

v

w

120◦

60◦
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2. Short answers. . . Intuition and Understanding

(a) If you are driving, then what device (or devices) in your car will be the best way to
change your tangential acceleration?

Solution: Gas pedal & brake

(b) What is the curvature of a circle with radius 64?

Solution: κ = 1
64

(c) f(x, y) is defined to equal 5 for all points on the disk (x − 1)2 + (y − 2)2 ≤ 16, to
equal −3 for all points on the disk (x+5)2+(y+8)2 ≤ 4, and to equal 0 everywhere
else. Compute: ∫ 100

x=−90

∫ 90

y=−100

f(x, y) dy dx.

Solution: = 5 · π(42)− 3π(22) = 68π

(d) Will the surface integral ∫∫
S

f(x, y, z) dS

typically give you the surface area of S? Explain your answer in one sentence or
less.

Solution: No. Only if f(x, y, z) = 1 will the integral compute the surface area
of S.

(e) What is the average value of the function f(x, y) = 4+2y on the rectangle 2 ≤ x ≤ 6,
1 ≤ y ≤ 3?

Solution:

=

∫ 3

1

∫ 6

2
(4 + 2x) dx dy

(6− 2)(3− 1)
=

∫ 6

2
(4 + 2x) dx

4
=

[
4x+ x2

]6
2

4
= 12
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3. Short answers. . . Definitions and Theorems

(a) Suppose that ∇f(0, 0) = ⟨0, 0⟩, and fxx(0, 0) and fyy(0, 0) are both negative. Do
you need anything else to conclude that (0, 0) is a local maximum? (If yes, then
what? If no, then why not?)

Solution: Yes, need to know that the discriminant > 0. In particular, that
fxx(0, 0)fyy(0, 0) > fx,y(0, 0)

2.

(b) What does it mean (definition!) for a vector field F(x, y, z) to be incompressible?

Solution: divF = 0.

(c) According to the theorem that we learned, if f is a continuous function on a set Ω,
then what condition or conditions on Ω will guarantee that f attains an absolute
maximum and absolute minimum?

Solution: Ω must be closed and bounded

(d) Assume that you have been given a differentiable vector field defined on the first
octant. How can you quickly tell if it is conservative?

Solution: Since it is defined on the entire first octant (a simply connected
domain), the vector field is conservative if and only if its curl is the zero vector.
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4. A certain differentiable function satisfies:

(a) f(2,−4) = 1, and f(−9, 6) = 7

(b) ∇f(2,−4) = (5, 3), and ∇f = (−9, 6) = (8,−π).

At each of the two points in question (i.e. at (2,−4) and at (−9, 6)) answer the following
questions:

(a) In what direction is the function increasing the fastest?

Solution:
For (2,−4): ⟨5, 3⟩;
For (−9, 6): ⟨8,−π⟩.

(b) What is the rate of change in that direction?

Solution:
For (2,−4):

√
25 + 9 =

√
34;

For (−9, 6):
√
64 + π2.

(c) What is the directional derivative in the direction of ⟨4,−3⟩? (Note: just to be
completely clear about semantics here, you are supposed to give the same directional
derivative at each point. I did not ask for the directional derivative in the direction
of the point (4,−3).)

Solution: Let u =
〈
4
5
,−3

5

〉
.

For (2,−4): Duf(2,−4) = ∇f(2,−4) · u = ⟨5, 3⟩ ·
〈
4
5
,−3

5

〉
= 11

5
.

For (−9, 6): Duf(−9, 6) = ∇f(−9, 6) · u = ⟨8,−π⟩ ·
〈
4
5
,−3

5

〉
= 32+3π

5
.

(d) What is the tangent plane and/or the linear approximation at each of the two
points?

Solution:
For (2,−4): L(x, y) = 1 + 5(x− 2) + 3(y + 4)
For (−9, 6): L(x, y) = 7 + 8(x+ 9)− π(y − 6)
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5. Find the maximum and minimum of the function

f(x, y) = x− 4x2 + 3y − 4y2

on the set
g(x, y) = x2 + y2 ≤ 40.

Show your work carefully, and explain what you are doing. (No essays, please. Just a
few short words in the right places will suffice.)

Solution: First, consider g < 40. Setting ∇f = 0, and solving

∇f = ⟨1− 8x, 3− 8y⟩ = 0

gives the critical point (1
8
, 3
8
). Next, considering g = 40, we solve ∇f = λ∇g:

1− 8x = 2λx

3− 8y = 2λy

x2 + y2 = 40

The first two equations give

x =
1

8 + 2λ
y =

3

8 + 2λ

Substituting into the the third equation gives

10

(8 + 2λ)2
= 40 =⇒ 1

(8 + 2λ)2
= 4 =⇒ 1

8 + 2λ
= ±2

which yields the two constrained critical points: (2, 6), (−2,−6). Evaluating f on
the found critical points:

f(
1

8
,
3

8
) =

5

8
f(2, 6) = −140

f(−2,−6) = −180

Thus the maximum is 5
8
, and the minimum is −180.
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6. Let S be the part of the set
z = x2 + y2

which is between the planes z = 9 and z = 16.
Express the surface area for S as an iterated integral (i.e. a double or triple integral) over
a subset of R2 or R3 which has constant bounds of integration. (i.e. it should be over a
rectangular solid or a rectangle in the domain in which you are finally integrating.) You
do NOT need to find this integral.

Solution: The set S can be parametrized by

G(r, θ) = (r cos θ, r sin θ, r2) 3 ≤ r ≤ 4, 0 ≤ θ ≤ 2π

We can then compute

N = Gr ×Gθ = ⟨cos θ, sin θ, 2r⟩× ⟨−r sin θ, r cos θ, 0⟩
=
〈
−2r2 cos θ,−2r2 sin θ, r

〉
and

∥N∥ =
√
4r4 + r2

The surface area of S can thus be computed as the surface integral∫∫
S

1 dS =

∫ 2π

0

∫ 4

3

√
4r4 + r2 dr dθ
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7. Let C be the curve given by

r(t) =

(
t · cos(5πt), t3

4 + t2
, t+ sin(5πt)

)
,

with 0 ≤ t ≤ 2. Compute the following integral:∫
C

〈
y, x, 3z2

〉
· dr.

Solution: Note that the vector field F =
〈
y, x, 3z2

〉
is conservative, with potential

function f = xy + z3. Hence by the Fundamental Theorem for Line Integrals,∫
C

F · dr = f(r(2))− f(r(0))

= f(2, 1, 2)− f(0, 0, 0)

= 2 + 8− 0 = 10
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8. Let Q be the set of points within the set:

{(x, y, z) : x2 + y2 + z2 ≤ 9, and 0 ≤ y}

and let ∂Q be the boundary of this set. If n is the outward unit normal to this region,
then compute: ∫∫

∂Q

(cos
(
z4
)
, y2, sin

(
x4
)
) · n dS.

Solution: By the divergence theorem,∫∫
∂Q

F · dS =

∫∫∫
Q

divF dV

so ∫∫
∂Q

(cos
(
z4
)
, y2, sin

(
x4
)
) · n dS =

∫∫∫
Q

2y dV

Evaluating this integral in spherical coordinates,∫∫∫
Q

2y dV =

∫ π

0

∫ π

0

∫ 3

0

2ρ sinφ sin θ · ρ2 sinφ dρ dφ dθ

=

∫ 3

0

2ρ3 dρ ·
∫ π

0

sin θ dθ ·
∫ π

0

sin2 φ dφ

=

[
ρ4

2

]3
0

· [− cos θ]π0 ·
[
1

2
φ− 1

4
sin 2φ

]π
0

=
81

2
· (1 + 1) · (π

2
− 0− 0)

=
81π

2
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9. Let E be the subset of
z = x2 + y2

which also satisfies
z ≤ 16, x ≥ 0, and y ≤ 0.

Express ∫∫
E

y2 dS

as an iterated integral (i.e. a double or triple integral) over a subset of R2 or R3. You
do NOT need to find this integral.

Solution: The set E can be parametrized by

G(r, θ) = (r cos θ, r sin θ, r2) 0 ≤ r ≤ 4, −π

2
≤ θ ≤ 0

Then we can compute

N = Gr ×Gθ = ⟨cos θ, sin θ, 2r⟩× ⟨−r sin θ, r cos θ, 0⟩
=
〈
−2r2 cos θ,−2r2 sin θ, r

〉
and

∥N∥ =
√
4r4 + r2

Which allows to rewrite the integral as∫∫
E

y2 dS =

∫ 0

−π
2

∫ 4

0

r2 sin2 θ ·
√
4r4 + r2 dr dθ
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10. Let E be the part of the set √
x2 + y2 ≤ z ≤ 3

that also satisfies
x ≤ 0.

Find ∫∫∫
E

x dV.

Solution: The inequaltiy can be reexpressed as 0 ≤ r ≤ z ≤ 3. The bounds for the
variables are

θ ∈ [
π

2
,
3π

2
] r ∈ [0, 3] z ∈ [r, 3]

E is half of a solid cone. The integral can be written in cylindrical coordinates as∫ 3π
2

π
2

∫ 3

0

∫ 3

r

r cos θ · r dz dr dθ =

∫ 3π
2

π
2

cos θ dθ ·
∫ 3

0

∫ 3

r

r2 dz dr

= [sin θ]
3π
2
π
2

·
∫ 3

0

r2(3− r) dr

= (−1− 1) ·

[
r3 − r4

4

]3
0

= −2

(
27− 81

4

)
= −27

2


