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answer the questions in the spaces provided on the question sheets. If you
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1. For the following questions, suppose u = 〈2,−1, 2〉 and v = 〈1, 2,−2〉.
(a) (5 points) Evaluate 2u + v.

Solution: 2u + v = 〈5, 0, 2〉.

(b) (5 points) Evaluate u · v.

Solution: u · v = −4.

(c) (5 points) Do the vectors u and v make an acute, right or obtuse angle? Justify
your response.

Solution: We have that −4 = u · v = ‖u‖‖v‖ cos(θ) = 9 cos(θ) implying that
cos(θ) = −4

9
so that they make an obtuse angle.

(d) (5 points) Evaluate u× v.

Solution:

u× v =

∣∣∣∣∣∣
i j k
2 −1 2
1 2 −2

∣∣∣∣∣∣
=

∣∣∣∣−1 2
2 −2

∣∣∣∣ i− ∣∣∣∣2 2
1 −2

∣∣∣∣ j +

∣∣∣∣2 −1
1 2

∣∣∣∣k
= −2i + 6j + 5k

= 〈−2, 6, 5〉 .

(e) (5 points) Find the area of the parallelogram spanned by u and v.

Solution: The volume is ‖u× v‖ =
√

4 + 36 + 25 =
√

65.

(f) (5 points) Find the projection of v in the direction of u.

Solution: Calculating, we have proju(v) = u ·v/‖u‖2u = −4
9
u =

〈
−8

9
, 4
9
,−8

9

〉
.
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2. Solve the problems regarding the points P = (2, 2, 0), Q = (3, 0, 1) and R = (2,−1, 1).

(a) (8 points) Find a parametric equation for the line ` which is parallel to the line
passing through P and Q and contains R.

Solution: The direction vector ~PQ = 〈1,−2, 1〉 of the line passing through P
and Q is also a direction vector of `. This gives r(t) = 〈2,−1, 1〉+ t 〈1,−2, 1〉.

(b) (7 points) Find the distance between the line in part (a) and the origin.

Solution: Let u be the vector from the origin to R and v the direction vector
obtained above. Then v × u = 〈−1, 1, 3〉 which has norm

√
11. The distance

equals |‖~v × ~u‖/‖~v‖| =
√

11/
√

6 =
√
66
6

.
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(c) (8 points) Find the equation for the plane passing through points P , Q and R.

Solution: A normal vector to such a plane is the vector ~PQ× ~RQ = 〈1,−2, 1〉×
〈1, 1, 0〉 = 〈−1, 1, 3〉. Since 〈−1, 1, 3〉 · 〈2, 2, 0〉 = 0, the equation is

−x+ y + 3z = 0 or x− y − 3z = 0.

(d) (7 points) Find the distance between the plane found in part (c) and the point
(0, 0, 1).

Solution: This is simply the norm of the projection of k to the normal vector
which is

|k · 〈−1, 1, 3〉 |
‖ 〈−1, 1, 3〉 ‖

=
3√
11

=
3
√

11

11
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3. (a) (10 points) Sketch and describe the trace of the intersection of the plane y = −7
with the surface

x2 − y + z2 = 16.

Solution: Substituting y = −7 into the equation gives the intersection as z2 +
x2 = 9 which is a radius 3 circle centered about the origin.

(b) (10 points) For which values of t are the x = t traces of the equation x2 + 2x+y2 +
z2 = 1 empty? Describe the graph of this equation.

Solution: For x = t, we have the equation t2 + 2t−1 +y2 + z2 = 0 or y2 + z2 =
−(t2 + 2t − 1). So for all values t2 + 2t − 1 > 0, the trace is empty. This
inequality is solved by using the quadratic equation to find the roots which are
−2±

√
8

2
= −1 ±

√
2. Thus, whenever t < −1 −

√
2 or t > −1 +

√
2, the x = t

trace is empty.

This quadric surface is a sphere, as can be seen by completing the square. In
particular, adding 1 to both sides of the equation gives

(x+ 1)2 + y2 + z2 = 2.

So this is a sphere of radius
√

2 centered at (−1, 0, 0). This also gives an alter-
native way of determining when the x = t trace is empty.



Math 222 Exam 1, Page 6 of 7 February 14, 2019

4. (a) (10 points) Convert the equation y = zx to cylindrical coordinates and use this to
show that if a point P = (a, b, c) is on the graph (in Cartesian coordinates), then
so is (ta, tb, c) for all positive t.

Solution: This equation converts to z = tan θ after substitution. Since the
equation is independent of r, rescaling in the radial direction will not affect
whether you have a solution.

(b) (10 points) Find an equation in Cartesian coordinates for the equation

2 cosϕ = ρ

and describe its graph.

Solution: Multiplying both sides by ρ gives 2ρ cosϕ = ρ2 which converts to
0 = x2 + y2 + z2 − 2z = x2 + y2 + (z − 1)2 − 1 or

x2 + y2 + (z − 1)2 = 1

which is the sphere of radius 1 centered at (0, 0, 1).
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Some formulas

u = 〈u1, u2, u3〉
v = 〈v1, v2, v3〉

u× v = 〈u2v3 − v2u3, u3v1 − u1v3, u1v2 − u2v1〉

projuv =
u · v
‖u‖2

u

Coordinate systems

Cylindrical Spherical

x = r cos(θ) x = ρ cos(θ) sin(ϕ)

y = r sin(θ) y = ρ sin(θ) sin(ϕ)

z = z z = ρ cos(ϕ)

r =
√
x2 + y2 ρ =

√
x2 + y2 + z2

tan(θ) =
y

x
tan(θ) =

y

x

z = z cos(ϕ) =
z

ρ


