- 1. (10 points) §2.1: Let P = (0, 2), Q = (1, 3), R = (-4, -6).
 - (a) Find and express in both component form and by using standard unit vectors:

$$\overrightarrow{PQ}, \overrightarrow{PR}, \overrightarrow{PQ} - \overrightarrow{PR}$$

(b) Find a unit vector in direction \overrightarrow{PR} .

(c) Find **v** with the same direction as $\overrightarrow{PQ} - \overrightarrow{PR}$ and length 10.

- 2. (10 points) §2.2:
 - (a) Give an equation for S, the set of points of distance 5 from the point C = (2, -4, -6) in \mathbb{R}^3 .

(b) Give an equation to describe the intersection of S and the plane y = -3.

(c) Given P = (2, -9, -6) in S, find the unique point Q of distance 10 from P which is also in S.

(d) Find a unit-length vector in the direction of \overrightarrow{PQ} .

- 3. (10 points) §2.3: Let $\mathbf{u} = \langle 1, 4, -3 \rangle$ and $\mathbf{v} = \langle 2, -5, 2 \rangle$.
 - (a) Find $\mathbf{u} \cdot \mathbf{v}$. Find the angle $\theta \in [0, \pi]$ between \mathbf{u}, \mathbf{v} .

(b) Find $\| \operatorname{proj}_{\mathbf{u}}(\mathbf{v}) \|$. Find $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$

(c) Are \mathbf{v} and the standard basis vector \mathbf{k} orthogonal? Why or why not?

(d) Find the work done by a force $\mathbf{F} = \langle 1, -4, -3 \rangle$ applied to move an object in a straight line from the terminal point of \mathbf{u} to the terminal point of \mathbf{v} . Let units be in feet and lbs.

4. (10 points) §2.4: Let **u** = ⟨4, 1, 3⟩ and **v** = ⟨-5, 1, 6⟩.
(a) Find **u** × **v** and ||**u** × **v**||.

(b) Find a unit-length vector orthogonal to both \mathbf{u} and \mathbf{v} .

(c) Let $P = \langle 2, -5, 7 \rangle$. Find the area of the triangle spanned by P and the terminal points of **u**, **v**

(d) Find the volume of the parallelopiped spanned by \mathbf{u}, \mathbf{v} and $-\mathbf{j}$, where $\mathbf{j} = \langle 0, 1, 0 \rangle$.

(e) Are ${\bf u}$ and $\langle -3,4,-1\rangle$ orthogonal? Why or why not?

- 5. (10 points) §2.5: Let P = (1, 1, -1), Q = (-7, -6, 4), and R = (-3, 2, 8).
 - (a) Describe the line ${\mathcal L}$ through P and Q in vector, parametric, and symmetric form.

(b) Find the distance from R to the line \mathcal{L} through P and Q.

(c) Describe the plane Π through P, Q and R in vector, scalar, <u>or</u> general form (any form is acceptable).

(d) Classify the relationship between the line \mathcal{L} through P, Q and the line \mathcal{M} through R and (-10, -5, 2). Are \mathcal{L} and \mathcal{M} : equal, parallel but not equal, intersect but not equal, or skew?

(e) Find the distance from (2, -2, 2) to the plane Π .

- 6. (10 points) §2.6:
 - (a) Classify the following quadric surface and identify the axis of the surface:

 $49x^2 - 392x + 16y^2 - 32y - 784z + 2336 = 0$

(b) Give the trace in the z = 5 plane.

- 7. (10 points) §2.7:
 - (a) Identify the following surfaces in spherical coordinates, and sketch a graph of the surface:

i. $\phi = \frac{\pi}{2}$.

ii. $\rho = \cos \theta \sin \phi$. Hint: Multiply both sides by ρ .

(b) Convert the following points from rectangular to both cylindrical and spherical coordinates, respectively:

i. (3, 1, 5).

ii. (-2, 1, 7).

8. (10 points) §3.1: Let $\mathbf{r}(t) = \left\langle e^{-4t}, e^{\frac{1}{2t}}, \ln(2t) - 7 \right\rangle$. (a) Find $\lim_{t \to 10} \mathbf{r}(t)$.

(b) Is $\mathbf{r}(t)$ continuous at t = 10?

(c) Are there any domain restrictions on $\mathbf{r}(t)$?

(d) Are there any values for t at which $\mathbf{r}(t)$ is not continuous?

(e) Let C be the space curve given by $\mathbf{r}(t) = \langle t, t^3, 20 \rangle$. Describe the curve: What shape is it?

(f) C is contained in a unique plane in \mathbb{R}^3 . Which plane is C contained in?

- 9. (10 points) §3.2:
 - (a) Using the limit definition of the derivative, find $\mathbf{r}'(t)$ for

$$\mathbf{r}(t) = \langle t^2, -4t \rangle.$$

(b) Using your formula from part (a), find $\mathbf{r}'(5).$

(c) Let
$$\mathbf{u}(t) = \langle t, t^2, t^3 \rangle$$
 and $\mathbf{w}(t) = \langle 2t + 3, \ln(t), 12 \rangle$. Find
$$\int \mathbf{u}(t) \times \mathbf{w}(t) dt$$

(d) Find $\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{w}(t)]$

- 10. (10 points) §3.3: Let $\mathbf{r}(t) = \langle 3\cos(2t), 3\sin(2t), 12t \rangle$.
 - (a) Find the arc length of $\mathbf{r}(t)$ over $t \in [0, 4\pi]$.

(b) Give an arc length parametrization of $\mathbf{r}(t)$ for t > 0.

(c) Find the principal unit normal vector $\mathbf{N}(t)$ at $t = 4\pi$.