Rec. Instructor:

Signature _____

Rec. Time _____

CALCULUS III - PRACTICE TEST 1

Show all work for full credit. No books or notes are permitted.

Problem	Points	Possible
1		20
2		20
3		30
4		20
5		10
Total Score		100

Note: Bold letters, like \mathbf{u} , are considered vectors unless specified otherwise.

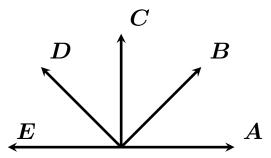
You are free to use the following formulas on any of the problems.

 $\mathbf{Projection:} \ \operatorname{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2} \mathbf{u}$

Cylindrical Coordinates:

$$x = r\cos(\theta)$$
 $r = \sqrt{x^2 + y^2}$
 $y = r\sin(\theta)$ $\tan(\theta) = \frac{y}{x}$
 $z = z$ $z = z$

Spherical Coordinates:


$$x = \rho \cos(\theta) \sin(\varphi) \qquad \qquad \rho = \sqrt{x^2 + y^2 + z^2}$$

$$y = \rho \sin(\theta) \sin(\varphi) \qquad \qquad \tan(\theta) = \frac{y}{x}$$

$$z = \rho \cos(\varphi) \qquad \qquad \cos(\varphi) = \frac{z}{\rho}$$

- (20) **1.** Define $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle -1, 0, 1 \rangle$. Compute the following:
 - a) ||**u**||.
 - b) $\mathbf{u} \cdot \mathbf{v}$.
 - c) $\mathbf{u} \times \mathbf{v}$.
 - d) The area of the parallelogram formed by ${\bf u}$ and ${\bf v}$.
 - e) The angle between \mathbf{u} and \mathbf{v} .

(20) **2.** For this problem we refer to the following diagram, which is drawn to scale:

The vectors \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{C} , \boldsymbol{D} , and \boldsymbol{E} all have length three. All of the angles between the vectors are multiples of 45 degrees. Compute the following explicitly:

- a) $\mathbf{A} \cdot \mathbf{E}$
- b) $\|\mathbf{B} \times \mathbf{D}\|$
- c) $\mathbf{B} \cdot \mathbf{C}$
- d) $\|\mathbf{C} \mathbf{E}\|$
- e) $\mathbf{A} \cdot \mathbf{A}$

(30) **3.**

- a) Find an equation for the plane containing the points P = (1, 1, 1), Q = (3, 2, 0), and R = (2, 0, 1). Express your answer in the form Ax + By + Cz = D.
- b) Find the shortest distance from point S = (-1, 9, 1) to the plane you found in (a).
- c) Find the equation for the line passing through point Q and perpendicular to the plane you found in (a).

(20) **4.** Convert the equation written in spherical coordinates into an equation in Cartesian coordinates.

$$\csc(\varphi) = 2\cos(\theta) + 4\sin(\theta)$$

- (10) **5.** Label the following as reasonable or unreasonable:
 - a) $2/\mathbf{v}$
 - $\vec{\mathbf{b}}) \, \vec{\mathbf{u}}/2$
 - c) $\mathbf{u} \cdot \mathbf{v} = 2$
 - $\dot{d)} \; (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
 - e) $3 \times v$