NAME _____

Rec. Instructor: _____

Signature _____

Rec. Time _____

CALCULUS III - PRACTICE TEST 2

Show all work for full credit. No books or notes are permitted.

Problem	Points	Possible
1 10010111	1 011105	1 0001010
1		
2		
3		
4		
5		
6		
7		
Total Score		

Note: Bold letters, like **u**, are considered vectors unless specified otherwise. You are free to use the following formulas on any of the problems.

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

 $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}^{''}(t)\|}{\|\mathbf{r}'(t)\|^3} = \frac{|y^{''}|}{[1+(y')^2]^{3/2}}$$

Directional Derivative: $D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}.$

1. Find the unit tangent vector, the principal unit normal vector, the binormal vector, and curvature for

 $\mathbf{r}(t) = \langle 3t, \cos(4t), \sin(4t) \rangle.$

page 2 of 7
2. Let
$$f(x,y) = x^2 - xy + 3y^2$$
, $y(r,\theta) = r\sin(\theta)$ and $x(r,\theta) = r\cos(\theta)$. Find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$.

page 3 of 7

3. Calculate the following:
a)
$$\lim_{t \to \infty} \left\langle \frac{\ln(t)}{t^2}, \frac{2t^2}{1-t-t^2}, e^{-t} \right\rangle$$
.

b) The equation of the tangent plane to $f(x, y) = x^2y - \sqrt{x+y}$ at point (1, 2).

page 4 of 7 4. Find all the first partial derivatives and second partial derivatives of $f(x, y) = xy^2 \ln(x) + 3\cos(x)$.

page 5 of 7

5. Calculate the limit if it exists. If the limit does not exist, explain why not. ue^{x}

a)
$$\lim_{(x,y)\to(1,2)} \frac{-ye^x}{x+y^2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$$

6. Let

$$f(x, y, z) = x^2y + y^2z + z^2x.$$

a) Find the gradient of f.

b) Find $D_{\mathbf{u}}f(1,1,1)$ in the direction of $\mathbf{v} = \langle \sqrt{2}, \sqrt{2}, \sqrt{2} \rangle$.

7. Consider $\mathbf{r}(t) = \langle 2t, 3\cos(2t), 3\sin(2t) \rangle$. a) Find the arc length function s(t) for $\mathbf{r}(t)$.

b) Find the arc length parameterization $\mathbf{r}(s)$.