NAME		

Rec. Instructor:

Signature _____

Rec. Time _____

CALCULUS III - EXAM 2

Show all work for full credit. No books or notes are permitted.

Problem	Points	Possible
1		20
1		20
2		10
3		10
4		20
5		15
0		10
6		15
7		10
Total Score		100

Note: Bold letters, like \mathbf{u} , are considered vectors unless specified otherwise.

You are free to use the following formulas on any of the problems.

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} = \frac{|y''|}{[1 + (y')^2]^{3/2}}$$

Directional Derivative: $D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$.

(20) 1. Find the unit tangent vector, the principal unit normal vector, the binormal vector, and curvature for

$$\mathbf{r}(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle.$$

(10) **2.** Let $f(x,y) = \ln(xy) - 1$, $y(u,v) = u^2 + v^2$ and x(u,v) = uv. Find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$.

(10) **3.** Calculate the following:
a)
$$\lim_{t\to 0} \left\langle \frac{e^t - 1}{t}, \frac{3}{5 - t^2}, \sin(2t) \right\rangle$$
.

b) The equation of the tangent plane to $f(x,y) = 2x^2 + xy - 6y^2$ at point (3, -1).

(20) **4.** Find all the first partial derivatives and second partial derivatives of $f(x,y) = \sqrt{x^2 + y} + 3x$.

(15) **5.** Let

$$f(x, y, z) = xe^y + ye^z + ze^x.$$

a) Find the gradient of f.

b) Find $D_{\mathbf{u}}f(-1,2,0)$ in the direction of $\mathbf{v} = \langle -1, -1, -1 \rangle$.

(15) **6.** Calculate the limit if it exists. If the limit does not exist, explain why not.

a)
$$\lim_{(x,y)\to(1,-1)} \frac{5x-7y}{x+y+1}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$$

(10) **7.** Consider

$$\mathbf{r}(t) = \left\langle \frac{1}{3}t^3, \frac{\sqrt{2}}{2}t^2, t \right\rangle.$$

Find the arc length function s(t) for $\mathbf{r}(t)$. (Hint: What is $(t^2+1)^2$?)