Ν	am	e	:
× '	will	~	٠

1. Solve the initial value problem $\frac{d^2y}{dr^2} + 7\frac{dy}{dr} + 10y = 0$, y(0) = 3, y'(0) = 9. $(D^2 + 7D + 10)y = 0$ $(D_{t}5)(D_{t}2)y = 0$ roots -5, -2 General Solution $y = C_1 e^{-5x} + C_2 e^{-2x}$ $y' = -5C_1 e^{-5x} - 2C_2 e^{-2x}$ Tuitial Conditions $y(0) = C_{1} + C_{2} = 3$ $y'(0) = -5C_{1} - 2C_{2} = 9 \\ 2C_{1} + 2C_{2} = 6$ $-3C_{1} = 15$ $C_{1} = -5 \Rightarrow -5 + C_{2} = 3$ $y = -5e^{-5x} + 8e^{-2x}$ $C_{2} = 8$

Ν	ame:
ΙN	ame.

2. Find the general solution to $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 17y = \exp(-x)$. Homa Soln. $(D^{2}+2D+17)y=0$ $r_{50+5} - 2 \pm \sqrt{4 - 4.17} = -2 \pm (-6)^{2}$ $= -1 \pm 4i$ $y_{h} = C_{1} e^{-x} cos(4x) + C_{2} e^{-x} sin(4x)$ Pourt, Soln. Guess y, = Aet $y_{p}^{"} = -Ae^{-x}$ $y_{p}^{"} = Ae^{-x}$ $y_{p}^{"} + 2y_{p}^{"} + 17y_{p} = (A - 2A + 17A) e^{-x} \stackrel{Set}{=} e^{-t}$ /6A = -1yp = 16 e^{-x} A = 1/16 $y = \frac{1}{16} e^{-x} + C_1 e^{-x} \cos(4x) + C_2 e^{-x} \sin(4x)$

3. Solve the initial value problem $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 8y = 5\exp(3x).$ $y(0) = 4, \quad y'(0) = 5$

Hans. Solu.
$$D^{2}-2D-8y = 0$$

 $(D-4)(D+2)$
rosts $4, -2$
 $y_{h} = C_{1}e^{4x} + C_{2}e^{-2x}$
Part Solu. $y_{p} = Ae^{3x}$ $y_{p}^{\mu}-2y_{p}^{\mu}-8y_{p}$
 $y_{p}^{\mu} = 3Ae^{3x}$ $= (9-6-8)Ae^{3x}$
 $y_{p}^{\mu} = -e^{3x}$ $= -5Ae^{3x}$
 $y_{p}^{\mu} = -e^{3x} + C_{1}e^{4x} + C_{2}e^{-2x}$
 $y' = -3e^{3x} + 4C_{1}e^{4x} - 2C_{2}e^{-2x}$
Instal Conditions
 $y' = -3 + 4C_{1} - 2C_{2} = 5$
 $y' = -3 + 4C_{1} - 2C_{2} = 5$
 $y' = -3 + 4C_{1} - 2C_{2} = 5$
 $y' = -2 + 2C_{1} + 2C_{2} = 8$
 $-5 + 6C_{1} = 13$
 $G_{2} = -2 + 3e^{4x} + 2e^{-2x}$

Nam	e:
-----	----

4. Rewrite $5\cos(9x) - 12\sin(9x)$ in the form $A\cos(9x + \phi)$. 5 cos(9x) -12 sin (9x) $= \operatorname{Re}\left[(5+12i)(\cos(\pi x) + i\sin(\pi x)) \right]$ $\int \frac{15+12i}{5} = \sqrt{5^{2}+12^{2}} = 13$ $\int \frac{15+12i}{5} = \frac{12}{5} = \frac{12}{$ $= Re[13e^{i(1.176...)}e^{i9x}]$ = Re [13e (9x+1.176...)] $= 13 \cos(9x + 1.176...)$

Name: 5. Using Euler's method with step size k = 0.1 approximate y(0.2) if $\frac{d^2 y}{dx^2} + 5\frac{dy}{dx} + 6y = 0, \quad y(0) = 2, \quad y'(0) = 1.$ = du $f_{x} = d_{y}^{2} = -5 d_{x}^{2} - 6y = -5v - 6y$ X 2 =-5.1-6.2 2+.1(1) [+.1(-17) 0+0.1 = | - - 17 = 2.1 = -0.7 二〇.) = -5(-0,7)-6(2.1) $= \frac{2.1}{+0.1(-6.7)} - \frac{-0.7}{+0.1(-9.1)}$ 0-1+0-1 --0.7 --9.1 = 0.2 -1.61 = 2.03 y(0.2) = 2.03 Don 7 actually hered to compute final dr and v since you are asked about y

Name:

6. Match the following differential equations with the graphs of one of their solutions.

10

-10

Name:	
-------	--

7. A spring-mass system has mass m, spring constant k, and hence natural frequency $\omega_0 = \sqrt{\frac{k}{m}}$. The damping constant can take any value. Show that the smallest half-life you can get without the spring becoming overdamped is $\frac{\ln(2)}{\omega_0}$ The larger the deeuping the smaller the half-life (as long as not overdamped) Largest damping you can have before overdamping is critically damped at $C^2 = 4 km$ $C = \sqrt{4km} - \frac{ct}{2m}$ Then anylimde = $Ae^{-\sqrt{4km}t} = Ae^{-\sqrt{k}t}$ = $Ae^{-\sqrt{4km}t} = Ae^{-\sqrt{k}t}$ C = NYKM At time O, amplitude = A e° = A After 1 half-life Amplinde = AS So we want to so that $A e^{-\sqrt{kt}t} = \frac{1}{2}A$ (remember) $\omega_0 = \sqrt{k}$ $-\omega_{ot} = \frac{1}{2}$ $-\omega_{ot} = ln(\frac{1}{2}) = -lnk$ $\int t = ln(2)$ (ω_{o})

8. Suppose L is a second-order linear differential equation, not necessarily monic or with constant coefficients, such that

$$L(\exp(2x)) = 24\exp(2x)$$

$$L(\exp(-x)) = 0$$

$$L(\exp(-2x)) = 0$$

Find the general solution to $Ly = 48\exp(2x)$.

Hint: while it is possible to solve this problem by deducing what L is, there is a quicker way to the answer where you don't have to find L explicitly.

By linearity, if
$$L(exp(2x)) = 24exp(2x))$$

 $fhen L(dexp(2x))$
 $= 2L(exp(2x)) = 2(24exp(2x))$
 $= 2L(exp(2x)) = 2(24exp(2x))$
 $= 2L(exp(2x)) = 2(24exp(2x))$
 $= 2L(exp(2x)) = 2(24exp(2x))$
 $= 48exp(2x)$
 $= 6xp(-x) + 6xexp(-2x)$
 $= 6xp(-2x) + 6xexp(-2x)$
 $= 6xp(-2x) + 6xexp(-2x) + 6xexp(-2x) + 6xexp(-2x)$
 $= 6xexp(-2x) + 6$

Alternate approach to #8 L(e-x)=0 so factor DH 1 (e-2x) = 0 so factor D+2 $Try L = (D+1)(D+2) = D^{2}+3D+2$ then 1(e²x) = 4e²x + 6e²x + 2e²x = 12e²× oops we wanted 24e2× Multiply by 2 to fix that $L = 2D^2 + 6D + 4$ So our equation is 2 dy + 6 dy + 4y = 48 ezr Now solve this as usual to get $y = 2e^{2x} + c_1 e^{-x} + c_2 e^{-2x}$