Name:	 	
Recitation:	 	

Math 240 Exam 3 November 18, 2014

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	

Closed book. You may use a calculator and one $8 \frac{1}{2} \times 11$ " sheet of handwritten notes (both sides). You must show your work to receive full credit. Write solutions in explicit form if possible. All problems have a solution that can be found using the techniques of this class. Series solutions should be listed at least through the x^4 term unless otherwise specified.

Pledge:				
On my honor, as a student, I l	have neither given	nor received u	inauthorized ai	d on this
•	C			
examination:				
	(signature)		(date)	

- **1.** Note: you may use the table of Laplace transforms which is attached at the end of the test.
- a) Find the Laplace transform of $f(t) = 2\cos(t) + 1$

b) Find the inverse Laplace transform of $F(s) = \frac{2s+2}{s^2+6s+13}$.

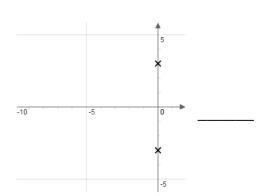
2. Solve the initial value problem
$$y'' + 8y' + 15y = \delta(t), \quad y(0) = 0, \quad y'(0) = 0.$$

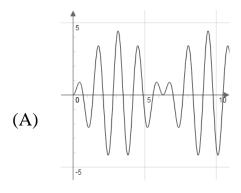
3. Solve the initial value problem,
$$y''+(x+4)y=0$$
, $y(0)=1$, $y'(0)=-4$.

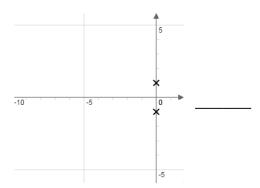
Name:			

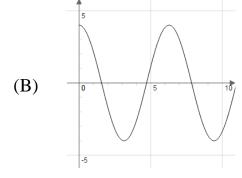
4. Solve the initial value problem (your solution will involve an integral) y''+4y'+5y=f(t), y(0)=0, y'(0)=0

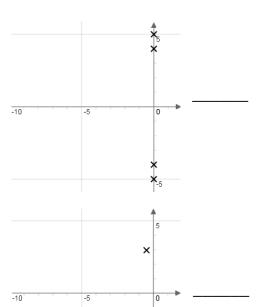
$$y''+4y'+5y=f(t)$$
, $y(0)=0$, $y'(0)=0$

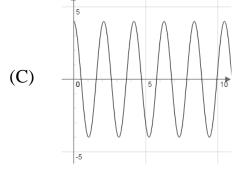

5. Find and classify the equilibria for the system,

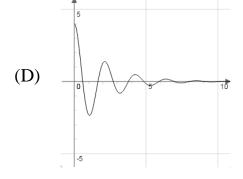

$$\frac{dx}{dt} = 3x^2 + 4y^2 - 16,$$
$$\frac{dy}{dt} = x - 2y$$


$$\frac{dy}{dt} = x - 2y$$


Name:_____


6. Match the poles of the Laplace transform on the left with the graphs of the functions on the right.





×

Name:			

7. The recurrence relation for the series solution $y = \sum_{n=0}^{\infty} a_n x^n$ for the equation y'' - xy' + 2y = 0 is $a_{n+2} = \frac{n-2}{(n+2)(n+1)} a_n$ for $n \ge 0$. If you are given y''(0) = 4, what is the value of y(0)?

Name:_____

8. Suppose x and y satisfy the system

$$\frac{dx}{dt} = 10x - 2xy, \quad x(0) = 4$$
$$\frac{dy}{dt} = 3y - xy, \quad y(0) = 4$$

Find $\lim_{t\to\infty} x(t)$ and $\lim_{t\to\infty} y(t)$.