
Problem 2. (16 pts) Find and classify (as stable, semi-stable or un-
stable) the equilibria of the autonomous equation

dp

dt
= p3 − 4p2 + 4p as t→∞.

If p(t) is the solution of the equation, satisfying the initial condition
p(0) = 1, what is the limit limt→∞ p(t)?

The equilibria are found as follows: since p3−4p2+4p = p(p−2)2 = 0
when p = 0 or p = 2, we can conclude that p = 0 and p = 2 are the
equilibrium solutions. Furthermore, since p3−4p2+4p > 0 for 0 < p < 2
and for p > 2, while p3 − 4p2 + 4p < 0 for p < 0, the equilibrium at
p = 2 is semi-stable as t→∞, and the equilibrium at p = 0 is unstable
as t→∞. Finally, for the solution p(t), satisfying the initial condition
p(0) = 1, p′(t) > 0 and hence this solution is increasing towards the
equilibrium p = 2. Thus limt→∞ p(t) = 2.
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Problem 3. (16 pts) Consider the initial value problem

dy

dx
= y2, y(0) = 1.

Find the Picard iterations y1(x) and y2(x) for this problem, starting
with y0 = 1.

The Picard iteration formula for this problem reads:

yn+1(x) = 1 +

∫ x

0

yn(t)2dt.

For n = 0 we obtain

y1(x) = 1 +

∫ x

0

y0(t)
2dt = 1 +

∫ x

0

dt = 1 + x.

For n = 1 we obtain

y2(x) = 1 +

∫ x

0

y1(t)
2dt = 1 +

∫ x

0

(1 + t)2dt = 1 +
(1 + x)3 − 1

3

= 1 + x+ x2 +
x3

3
.
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Problem 4. (16 pts) Solve the initial value problem

y′′ − 4y′ + 4y = 2ex, y(0) = y′(0) = 0.

If yp is some particular solution of the equation then the solution
of the initial value problem is of the form y = yh + yp, where yh is a
solution of the homogeneous equation y′′h − 4y′h + 4yh = 0. Thus

(D2 − 4D + 4)yh = 0;

(D − 2)2yh = 0;

yh = C1e
2x + C2xe

2x,

where C1 and C2 are some constants. Now yp can be found in the form
yp = Kex, where K is a constant and hence

y′′p = y′p = Kex.

Substituting in the equation, we obtain

Kex − 4Kex + 4Kex = 2ex,

which implies K = 2. Thus yp = 2ex and

y = C1e
2x + C2xe

2x + 2ex.

Finally, since y(0) = y′(0) = 0, we have C1 + 2 = 2C1 + C2 + 2 = 0,
which implies C1 = −C2 = −2. Thus

y = −2e2x + 2xe2x + 2ex.
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Problem 5. (16 pts) Find the general solution of the equation

y′′ + 2y′ + 3y = 2 cos(x).

The general solution of the equation is of the form y = yh+yp, where
yp is some particular solution of the equation and yh is the general
solution of the homogeneous equation y′′h + 2y′h + 3yh = 0. Thus

(D2 + 2D + 3)yh = 0;

(D + 1 + i
√

2)(D + 1− i
√

2)yh = 0;

yh = C1e
(−1−i

√
2)x + C2e

(−1+i
√

2)x

= e−x(K1 cos(x
√

2) +K2 sin(x
√

2))

= Ae−x cos(x
√

2 + Θ),

where C1, C2, K1, K2, A,Θ are arbitrary constants. Furthermore, since
2 cos(x) = Re(2eix), yp can be found in the form yp = Re(z), where z
is a solution of the equation

z′′ + 2z′ + 3z = 2eix.

Set z = Keix, where K is a constant, then z′ = iKeix and z′′ = −Keix.
Therefore,

−Keix + 2iKeix + 3Keix = 2eix;

2(1 + i)K = 2;

K =
1

1 + i
=

1

2
− 1

2
i =

1√
2
e−πi/4;

z = Keix =
1√
2
ei(x−π/4) =

cosx+ sinx

2
+

sinx− cosx

2
i;

yp = Re(z) =
1√
2

cos(x− π/4) =
cosx+ sinx

2
.

Thus

y = Ae−x cos(x
√

2 + Θ) +
1√
2

cos(x− π/4)

= e−x(K1 cos(x
√

2) +K2 sin(x
√

2)) +
cosx+ sinx

2
.
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Problem 6. (16 pts) Solve the initial value problem

ẍ+ 3ẋ+ 2x = 3e−t, x(0) = ẋ(0) = 0.

If xp is some particular solution of the equation then the solution
of the initial value problem is of the form x = xh + xp, where xh is a
solution of the homogeneous equation ẍ+ 3ẋ+ 2x = 0. Thus

(D2 + 3D + 2)xh = 0;

(D + 2)(D + 1)xh = 0;

xh = C1e
−t + C2e

−2t,

where C1 and C2 are some constants. Since e−t is a solution of the
homogeneous equation, set xp = Kte−t, where K is a constant. Then

ẋp = K(1− t)e−t, ẍp = K(t− 2)e−t.

Therefore,

K(t− 2)e−t + 3K(1− t)e−t + 2Kte−t = 3e−t,

which implies K = 3. Hence xp = 3te−t and

x = C1e
−t + C2e

−2t + 3te−t.

Finally, since x(0) = ẋ(0) = 0,

C1 + C2 = −C1 − 2C2 + 3 = 0,

which implies
C1 = −C2 = −3.

Thus
x = −3e−t + 3e−2t + 3te−t.
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Problem 7. (16 pts) Suppose an undamped spring-mass system has a
mass of 5 g and resonates at a frequency of 13 Hz (13 cycles

sec
). A damping

mechanism is then attached to the system, and it is observed that the
free damped motion of the system is quasi-periodic with a frequency
of 12 Hz. What is the spring constant of the system? What is the
damping constant of the attached mechanism?

In the undamped scenario, the free motion is given by the equation

5ẍ+ kx = 0, or

(
D2 +

k

5

)
x = 0,

where k is the spring constant. Thus the circular frequency is

ω0 =

√
k

5
= 2π · 13 = 26π

(
rad

sec

)
and we conclude that

k = 5 · 262 · π2 = 3380π2
( g

sec2

)
.

In the damped scenario, the free motion is given by the equation

5ẍ+ cẋ+ kx = 0, or (D − r1)(D − r2)x = 0,

where c is the damping constant, and

r1,2 =
−c±

√
c2 − 20k

10
= −r ±

√
r2 − ω2

0,

where r = c/10. Since the motion is quasi-periodic (the system is under-
damped),

r2 − ω2
0 < 0,

and the circular frequency in this case is

ω =
√
ω2

0 − r2 = 2π · 12 = 24π

(
rad

sec

)
.

It follows that

r2 = ω2
0 − ω2 = 4π2(132 − 122) = 4π2(169− 144) = 100π2;

r = 10π;

c = 10r = 100π
( g

sec

)
.


