MATH 240 SPRING 2014

EXAM 3

Problem 1. (4 pts)

Your name:

Recitation instructor name:

Recitation time:

Problem	1	2	3	4	5	6	7	Total
Grade								

Problem 2. (16 pts) Solve the following initial value problem, using Laplace transform:

 $\ddot{x} + 4\dot{x} + 5x = 0$, x(0) = 1, $\dot{x}(0) = 2$.

 $\mathbf{2}$

Problem 3. (16 pts) Solve the following initial value problem, using Laplace transform:

$$\ddot{x} + 4\dot{x} + 3x = \delta(t-1), \quad x(0) = \dot{x}(0) = 0.$$

Problem 4. (16 pts) Solve as a convolution integral (do not evaluate the integral)

 $\ddot{x} - 2\dot{x} + x = e^{t^2}, \quad x(0) = \dot{x}(0) = 0.$

4

Problem 5. (16 pts) Find and classify (as stable, unstable or saddle) the equilibria of the system

$$\begin{cases} \dot{x} = x^2 - xy\\ \dot{y} = x + y + 2 \end{cases}$$

EXAM 3

Problem 6. (16 pts) As we have seen, the general solution of the homogeneous Euler equation

$$x^2y'' + xy' - y = 0$$

is

$$y = Ax + \frac{B}{x},$$

where A and B are arbitrary constants. Use variation of parameters to solve the initial value problem

$$x^{2}y'' + xy' - y = 4x^{3}, \quad y(1) = y'(1) = 0.$$

Problem 7. (16 pts) Let

$$y(x) = \sum_{n=0}^{\infty} y_n x^n$$

be the solution of the initial value problem

$$(x^{2}+4)y''+xy'-y=0, \quad y(0)=1, \quad y'(0)=0.$$

Determine the recurrence relation for the coefficients y_n . Find the coefficients y_0, y_1, y_2, y_3 and a lower bound for the radius of convergence of the power series y(x).

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\sin(at)$	$\frac{a}{s^2 + a^2}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2 + b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$\delta(t-c)$	e^{-cs}
u(t-c)f(t-c)	$e^{-cs}F(s)$
f'(t)	sF(s) - f(0)
f''(t)	$s^{2}F(s) - sf(0) - f'(0)$
$\int_0^t f(t-\tau)g(\tau)d\tau$	$\mathcal{L}{f(t)}\mathcal{L}{g(t)}$