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Problem 2. (16 pts) Solve the following initial value problem, using
Laplace transform:

ẍ+ 4ẋ+ 5x = 0, x(0) = 1, ẋ(0) = 2.
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Problem 3. (16 pts) Solve the following initial value problem, using
Laplace transform:

ẍ+ 4ẋ+ 3x = δ(t− 1), x(0) = ẋ(0) = 0.
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Problem 4. (16 pts) Solve as a convolution integral (do not evaluate
the integral)

ẍ− 2ẋ+ x = et2 , x(0) = ẋ(0) = 0.
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Problem 5. (16 pts) Find and classify (as stable, unstable or saddle)
the equilibria of the system{

ẋ = x2 − xy
ẏ = x+ y + 2
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Problem 6. (16 pts) As we have seen, the general solution of the
homogeneous Euler equation

x2y′′ + xy′ − y = 0

is

y = Ax+
B

x
,

where A and B are arbitrary constants. Use variation of parameters
to solve the initial value problem

x2y′′ + xy′ − y = 4x3, y(1) = y′(1) = 0.
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Problem 7. (16 pts) Let

y(x) =
∞∑

n=0

ynx
n

be the solution of the initial value problem

(x2 + 4)y′′ + xy′ − y = 0, y(0) = 1, y′(0) = 0.

Determine the recurrence relation for the coefficients yn. Find the
coefficients y0, y1, y2, y3 and a lower bound for the radius of convergence
of the power series y(x).
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Laplace transform

f(t) = L−1{F (s)} F (s) = L{f(t)}
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f ′(t) sF (s)− f(0)
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0
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