
Problem 1. (25 pts) Solve the initial value problem

dy

dx
+ y = exy2, y(0) = 1.

This is a Bernoulli equation; use the substitution

v = 1/y

to get

−dv
dx

+ v = ex,

which is linear. Multiplying both sides by the integrating factor

µ = e−x

leads to
d

dx
(−e−xv) = 1,

hence

−e−xv = x+ C;

v = ex(C − x);

y =
e−x

C − x
.

Since y(0) = 1, C = 1, and

y =
e−x

1− x
.
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Problem 2. (25 pts) Solve the initial value problem

dy

dx
=

8x− 3y

3x− y
, y(0) = 1.

Re-write the equation as

(3y − 8x)dx+ (3x− y)dy = 0,

which is exact because
∂(3y − 8x)

∂y
=
∂(3x− y)

∂x
= 3.

Hence the general solution is of the form F (x, y) = C, where
∂F

∂x
= 3y − 8x,

∂F

∂y
= 3x− y,

F (x, y) = 3xy − 4x2 − y2/2;

3xy − 4x2 − y2/2 = C or 8x2 − 6xy + y2 = C.

Since y(0) = 1, C = 1 and

8x2 − 6xy + y2 = 1

is the solution of the IVP.
Alternatively, one may treat the equation as homogeneous and use

the substitution y = xv which leads to

x
dv

dx
+ v =

8− 3v

3− v
,

x
dv

dx
=

8− 6v + v2

3− v
=

(v − 2)(v − 4)

3− v
,

which is separable. Separating the variables, one gets:

(3− v)dv

(v − 2)(v − 4)
=
dx

x
.

Since∫
(3− v)dv

(v − 2)(v − 4)
= −1

2

∫ (
1

v − 2
+

1

v − 4

)
dv = −1

2
ln |v2−6v+8|+C,

we obtain

ln |v2 − 6v + 8| = −2 ln |x|+ C; v2 − 6v + 8 =
C

x2
;

y2 − 6xy + 8 = C = 1

in view of the initial condition.
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Problem 3. (25 pts) Solve the initial value problem

ẍ− 3ẋ+ 2x = et, x(0) = ẋ(0) = 0.

Denote by X(s) the Laplace transform of x(t). Then

s2X − 3sX + 2X =
1

s− 1
;

X =
1

(s− 1)(s2 − 3s+ 2)
=

1

(s− 1)2(s− 2)

=
A

s− 2
+

B

(s− 1)2
+

C

(s− 1)
;

A(s− 1)2 +B(s− 2) + C(s− 1)(s− 2) = 1;

A = 1; B = −1; C = −1;

X =
1

s− 2
− 1

(s− 1)2
− 1

(s− 1)
;

x = e2t − tet − et.

Alternatively, write the solution as x = xh +xp where xh is a solution
of the homogeneous equation

ẍh − 3ẋh + 2xh = 0,

and xp is a particular solution of the original equation. Then

(D2 − 3D + 2)xh = 0; (D − 1)(D − 2)xh = 0; xh = Aet +Be2t.

Therefore, xp can be found in the form xp = Ctet; substitution yields

C(t+ 2)et − 3C(t+ 1)et + 2Ctet = et; C = −1; xp = −tet.

Thus
x = Aet +Be2t − tet.

In view of the initial conditions{
A+B = 0;

A+ 2B − 1 = 0;
hence

{
A = −1;

B = 1;

x = e2t − et − tet.
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Problem 4. (25 pts) Find and classify (as stable, unstable or saddle)
the equilibria of the system {

ẋ = xy − 1

ẏ = x− y
Find the equilibria:{

xy − 1 = 0;

x− y = 0;
hence x = y = ±1

and the equilibrium points are (1, 1) and (−1,−1). Next, consider the
matrix M(x, y) associated with the linearized system at an equilibrium
point (x, y):

M(x, y) =

[
∂(xy−1)

∂x
∂(xy−1)

∂y

∂(x−y)
∂x

∂(x−y)
∂y

]
=

[
y x
1 −1

]
.

In particular,

M(1, 1) =

[
1 1
1 −1

]
;

since detM(1, 1) = −2 < 0, the equilibrium at (1, 1) is a saddle point.
Similarly,

M(−1,−1) =

[
−1 −1
1 −1

]
;

since detM(1, 1) = 2 > 0 and traceM(1, 1) = −2 < 0, the equilibrium
at (−1,−1) is stable.
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Problem 5. (25 pts) Solve the initial value problem

x2y′′ + 5xy′ + 4y = 0, y(1) = 0, y′(1) = 1.

This is an Euler equation; the associated indicial equation is

r2 + 4r + 4 = 0

with the double root r = −2. Hence

y = x−2(A+B lnx),

where A and B are constants. In view of the initial conditions, A = 0
and B = 1, hence

y =
lnx

x2
.
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Problem 6. (25 pts) It is known that the general solution of the
homogeneous Euler equation

x2y′′ − 2xy′ + 2y = 0

is
y = Ax+Bx2,

where A and B are arbitrary constants. Use variation of parameters
to solve the initial value problem

x2y′′ − 2xy′ + 2y = x, y(1) = y′(1) = 0.

Look for solution of the inhomogeneous equation in the form

y = xA(x) + x2B(x),

where A and B are such that

xA′(x) + x2B′(x) = 0.

Substitution in the equation yields

x2(A′(x) + 2xB′(x)) = x.

Therefore,{
A′ + xB′ = 0;

A′ + 2xB′ = 1/x;

{
A′ = −1/x;

B′ = 1/x2;

{
A = C − lnx;

B = D − 1/x;

y = x(C − lnx) + x2(D − 1/x) = Cx+Dx2 − x lnx.

In view of the initial conditions,{
C +D = 0;

C + 2D − 1 = 0;

{
C = −1;

D = 1;

y = x2 − x− x lnx.
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Problem 7. (25 pts) Let

y(x) =
∞∑

n=0

ynx
n

be the solution of the initial value problem

(x2 + 1)y′′ + xy′ − 4y = 0, y(0) = 1, y′(0) = 0.

Determine the recurrence relation for the coefficients yn. Find the
coefficients y0, y1, y2, y3 and a lower bound for the radius of convergence
of the power series y(x).

First of all, since the singular points of the equation are at
x = ±i, the radius of convergence of the series is at least 1. Secondly,
substituting the expansions

y′ =
∞∑

n=0

(n+ 1)yn+1x
n, xy′ =

∞∑
n=0

nynx
n,

y′′ =
∞∑

n=0

(n+ 2)(n+ 1)yn+2x
n, x2y′′ =

∞∑
n=0

n(n− 1)ynx
n

into the equation and grouping together the coefficients of the matching
powers of x, one obtains

∞∑
n=0

(n(n− 1)yn + (n+ 2)(n+ 1)yn+2 + nyn − 4yn)xn = 0.

Thus

(n+ 1)(n+ 2)yn+2 + (n2 − 4)yn = 0, n = 0, 1, 2, . . . .

or

yn+2 =
2− n
n+ 1

yn, n = 0, 1, 2, . . . .

In view of the initial conditions,

y0 = 1, y1 = 0, y2 = 2y0 = 2, y3 = y1/2 = 0.
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Problem 8. (25 pts) Find and classify (as regular or irregular) the
singular points of the equation

(x3 − 2x2 + x)y′′ + (x− 1)y′ − y = 0.

Solve the indicial equation for every regular singular point you found.
First, find the singular points:

x3 − 2x2 + x = 0; x(x− 1)2 = 0; x = 0 and x = 1.

Divide by the leading coefficient:

y′′ +
1

x(x− 1)
y′ − 1

x(x− 1)2
y = 0.

At the singular point x = 0:

lim
x→0

x · 1

x(x− 1)
= −1;

lim
x→0

x2 · −1

x(x− 1)2
= 0.

Since both limits exist, x = 0 is a regular singular point and the asso-
ciated indicial equation is r2 − 2r = 0 with the roots r1 = 2, r2 = 0.

At the singular point x = 1:

lim
x→1

(x− 1) · 1

x(x− 1)
= 1;

lim
x→1

(x− 1)2 · −1

x(x− 1)2
= −1.

Since both limits exist, x = 1 is a regular singular point and the asso-
ciated indicial equation is r2 − 1 = 0 with the roots r1 = 1, r2 = −1.


