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Problem 1. (25 pts) Solve the initial value problem
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Problem 2. (25 pts) Solve the initial value problem

dy 8x— 3y
- =— 0)=1.
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Problem 3. (25 pts) Solve the initial value problem
i—3t+2x=c¢, z(0)=1(0)=0.
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Problem 4. (25 pts) Find and classify (as stable, unstable or saddle)
the equilibria of the system
{ r=xy—1
y=x—-y
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Problem 5. (25 pts) Solve the initial value problem
2*y" + 5wy +4y =0, y(1) =0,y'(1) = L.
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Problem 6. (25 pts) It is known that the general solution of the
homogeneous Euler equation

22y —2xy' +2y =0
is
y = Az + Ba?,
where A and B are arbitrary constants. Use variation of parameters

to solve the initial value problem

2y’ —2xy +2y =1z, y(1)=19(1)=0.
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Problem 7. (25 pts) Let

y(x) = yn"
n=0

be the solution of the initial value problem
(@ + Dy +ay' —4y =0, y(0)=1, (0)=0.
Determine the recurrence relation for the coefficients y,. Find the

coefficients yo, y1, ¥2, y3 and a lower bound for the radius of convergence
of the power series y(z).



8 FINAL EXAM

Problem 8. (25 pts) Find and classify (as regular or irregular) the
singular points of the equation
(2° —22° + 2)y" + (z — 1)y —y = 0.

Solve the indicial equation for every regular singular point you found.
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Laplace transform

f(t) = L7HF(s)}

F(s) = L{f(t)}
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