Math 240 Summer 2014 Exam 2

Jul. 11, 2014

Student Name:

Instructor:

Class time:

	Score
1	
2	
3	
4	
5	
6	
Total	

Problem 1. (18 points) Write down the general solution of each of the following differential equations: **a** y'' - 13y' + 40y = 0. **b** y'' + 5y' + 10y = 0. **c** y'' + 10y' + 25y = 0 **Problem 2.** (12 points) The amplitude of an underdamped spring-mass system is $Ae^{-\frac{ct}{2m}}$, which decays exponentially. Suppose an underdamped system has mass 250g and the amplitude has a half-life of 5 seconds. What is the damping constant of the system? (You must have the unit)

Problem 3. (20 points) Find the general solution of the following differential equation:

$$y'' - 2y' + y = 2e^x$$

Problem 4. (16 points) Find the general solution of the following differential equation:

$$y'' - 3y' + 2y = 2e^{-x}$$

Problem 5. (16 points) Use Laplace transform to solve the initial value problem:

$$x''(t) + x(t) = e^{t^2}, \quad x(0) = x'(0) = 0.$$

You may leave your answer expressed as definite integral.

Problem 6. (18 points) If we have the general solution of the homogeneous equation

$$x^2y'' - 2xy' + 2y = 0$$

is

$$y_h = Ax + Bx^2,$$

where A and B are constant numbers. Use variation of parameters to get the general solution of the inhomogeneous equation: 2 11 ,2

$$x^2y'' - 2xy' + 2y = x^2$$