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2 EXAM 3

Problem 2. (16 pts) Solve the following initial value problem, using
Laplace transform:

P 4d+4r =6(t—2), 2(0)=i(0) =0.
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Problem 3. (16 pts) Solve the following system:
{izx—y, z(0) =1,
Y =br — 1y, y(0) = 1.
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Problem 4. (16 pts) Solve as a convolution integral (do not evaluate
the integral)

i — 31+ 2r = 2(0) = 2(0) = 0.
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Problem 5. (16 pts) Find and classify (as stable, unstable or saddle)
the equilibria of the system

i = 2% — 2zy — 3y°
y=r—y—1
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Problem 6. (16 pts) It is known that the general solution of the
homogeneous Euler equation

%y — 3xy + 3y =0

is y = Az + Ba®, where A and B are arbitrary constants.
Use variation of parameters to find the general solution of the inho-
mogeneous equation

z*y" — 3xy + 3y = .
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Problem 7. (16 pts) Let
y(x) = Z Cpa™
n=0
be the solution of the initial value problem
(@ +2)y" + 62y +6y =0, y(0)=1, y'(0)=2.
Determine the recurrence relation for the coefficients ¢,,. Find the

coefficients cg, ¢1, ¢o, c3 and a lower bound for the radius of convergence
of the power series y(z).
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Laplace transform

f(t) = L7HF(s)}

F(s) = L{f(t)}
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