Algebra Qual August 2015

Attempt all six problems. Start each problem on a new sheet and order them before turning in.

- **1.** Let *H* and *K* be subgroups of a group G and let $HK = \{hk : h \in H, k \in K\}$.
- (i) Prove that if HK = KH then HK is a subgroup of G.
- (ii) Prove that if $H, K \triangleleft G$ and $H \cap K = \{1\}$ then $hk = kh \quad \forall h \in H, k \in K$ and $HK \simeq H \times K$.

2. Prove that a group of order $132 = 2^2 \cdot 3 \cdot 11$ is not simple.

3. Let R be a commutative ring with unity.

- (i) Prove that R is a field iff the only ideals of R are $\{0\}$ and R.
- (ii) Prove that (x) is a maximal ideal in the polynomial ring R[x] iff R is a field.

4. Let K be the splitting field of $f(x) = x^4 - 3$ over \mathbb{Q} .

(i) Find $[K : \mathbb{Q}]$ and $[K : \mathbb{Q}(\sqrt{3})]$.

(ii) Find the group of automorphisms of K that fix $\mathbb{Q}(\sqrt{3})$. Find its proper subgroups and the corresponding fields between $\mathbb{Q}(\sqrt{3})$ and K under the Galois correspondence.

5. Suppose that V and W are finite dimensional F-vector spaces and $T: V \to W$ a linear transformation.

(i) Prove that the kernel Ker(T) and image T(V) are subspaces of V and W respectively.

(ii) State and prove the relationship (rank-nullity theorem) between the dimensions.

6. Let R be an integral domain and M a unital (unitary) left R-module. For a submodule N of M or ideal I of R define the annihilator

 $\operatorname{Ann}_{R}(N) = \{ a \in R : an = 0 \ \forall n \in N \}, \quad \mathscr{A}nn_{M}(I) = \{ m \in M : cm = 0 \ \forall c \in I \}.$

i) Prove that $\operatorname{Ann}_R(N)$ is an ideal of R and $\mathscr{Ann}_M(I)$ is a submodule of M.

ii) If M is a free R-module what is $\operatorname{Ann}_R(N)$ and $\mathscr{Ann}_M(I)$?

iii) For the \mathbb{Z} -module $M = \mathbb{Z}_{12} \times \mathbb{Z}_{15} \times \mathbb{Z}_{50}$ what is $\operatorname{Ann}_{\mathbb{Z}}(M)$? What is $\mathscr{Ann}_{M}(3\mathbb{Z})$? (Here \mathbb{Z}_{n} denotes the integers mod n and the module action on M is just r(a, b, c) = (ra, rb, rc).)