E3F43A87-BAC0-413F-8F08-F68DE54481A4

Algebra QE I #1 2 of 18

407F545C-C482-42F7-ACB0-49BA56604B30 Algebra QE I #1 3 of 18

1. (10 pts)

Let R = k[x, y] be the ring of polynomials in two variables over a field k. Consider the ideal I = (x, y). View it as a module over R.

- a) Check that the map $F: R^2 \to I$ given by $F: (f,g) \mapsto xf + yg$ is a homomorphism of modules.
- b) Check that F is surjective and that ker F is isomorphic to R as an R-module.

02F11B35-4D0B-4842-91FA-3CBE720D9126

Algebra QE I

#1 4 of 18

- 2. (10 pts) Let $I \subset \mathbb{C}[x]$ be the ideal generated by $x^3 + x^2 2x$. Consider the factor space $V = \mathbb{C}[x]/I$.
 - a) Find the dimension and a basis of V as a vector space over \mathbb{C} .
 - b) Consider the operator $\varphi: V \to V$ given by multiplication by x. Compute the matrix of φ in the basis constructed in the previous part. What are the rank and nullity of φ ?
 - c) Determine the eigenvalues of the operator φ .

9E6CEC52-3586-4389-8455-32E690A40504

Algebra QE I

#1 6 of 18

3. (10 pts) Recall, that the center Z of a group G is defined by

$$Z := \{ c \in G : \forall g \in G, \ cg = gc \}$$

- a) Prove that Z is a subgroup of G.
- b) Consider the action of G on itself by conjugation, i.e. an element $g \in G$ acts on an element $h \in G$ by $h \mapsto g^{-1}hg$. Show that an element of $h \in G$ belongs to Z if and only if the G-orbit of h under the conjugation action consists of one element.
- c) Suppose that G is of order p^k , where p is a prime number. Show that the center Z contains more than one element.

Hint: use the Class Equation or the orbits of the conjugation action, and divisibility by p.

0E850342-9760-4FDC-A87D-83BF65D45336

Algebra QE I #1 8 of 18

4. (10 pts) Let H be a normal subgroup of a group G of index 4. Show that there are either exactly 3 or exactly 5 subgroups of G containing H (including G and H themselves).

B7A85B58-4BA6-478E-A88A-E5919AAE3C9E

Algebra QE I #1 10 of 18

Algebra QE I #1 11 of 18

- 5. (10 pts) Let E be the splitting field of $f(x) := x^4 + 7$ over \mathbb{Q} .
 - a) Find all zeros of f(x) in \mathbb{C} . (Hint: Use de Moivre's formula.)
 - b) Prove that $\sqrt[4]{28} \in E$, $\sqrt[4]{28}$ $i \in E$, and then that $i \in E$.
 - c) Show that $\mathbb{Q}(\sqrt[4]{28})$ is a subfield of *E* of degree 4 over \mathbb{Q} .
 - d) Show that $E = \mathbb{Q}(\sqrt[4]{28}, i)$, $[E : \mathbb{Q}] = 8$, and find a basis for E over \mathbb{Q} .

94166489-5D08-4D96-B596-19C1AEEB92E8

Algebra QE I

#1 12 of 18

Algebra QE I #1 13 of 18

6. (10 pts) Let R be a commutative ring with unity and I, J be ideals in R such that I + J = R. (Recall $I + J = \{a + b : a \in I, b \in J\}$.) Prove that

 $R/(I \cap J) \simeq R/I \times R/J.$

9C49BC53-BEEB-4178-A7EF-50D2BD81C824

Algebra QE I #1 14 of 18

C0F111D9-A60F-44C3-8E49-52002852531E

Algebra QE I #1 15 of 18

724E7DBE-930E-4707-8429-221F52187E60

Algebra QE I #1 16 of 18

B8D96B0B-C0CA-48BE-986A-136DC7630EB6

Algebra QE I #1 17 of 18

500088A6-0828-4B5E-BE38-93420AEA7330

Algebra QE I

#1 18 of 18