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1. (10 pts)

Let R = k[x, y] be the ring of polynomials in two variables over a field
k. Consider the ideal I = (x, y). View it as a module over R.

a) Check that the map F : R2 → I given by F : (f, g) �→ xf + yg is
a homomorphism of modules.

b) Check that F is surjective and that kerF is isomorphic to R as
an R-module.
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2. (10 pts) Let I ⊂ C[x] be the ideal generated by x3+x2−2x. Consider
the factor space V = C[x]/I.

a) Find the dimension and a basis of V as a vector space over C.

b) Consider the operator ϕ : V → V given by multiplication by x.
Compute the matrix of ϕ in the basis constructed in the previous
part. What are the rank and nullity of ϕ?

c) Determine the eigenvalues of the operator ϕ.
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3. (10 pts) Recall, that the center Z of a group G is defined by

Z := {c ∈ G : ∀g ∈ G, cg = gc}

a) Prove that Z is a subgroup of G.

b) Consider the action of G on itself by conjugation, i.e. an element
g ∈ G acts on an element h ∈ G by h �→ g−1hg.
Show that an element of h ∈ G belongs to Z if and only if the
G-orbit of h under the conjugation action consists of one element.

c) Suppose that G is of order pk, where p is a prime number. Show
that the center Z contains more than one element.

Hint: use the Class Equation or the orbits of the conjugation action,
and divisibility by p.
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4. (10 pts) Let H be a normal subgroup of a group G of index 4. Show
that there are either exactly 3 or exactly 5 subgroups of G containing
H (including G and H themselves).
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5. (10 pts) Let E be the splitting field of f(x) := x4 + 7 over Q.

a) Find all zeros of f(x) in C. (Hint: Use de Moivre’s formula.)

b) Prove that 4
√
28 ∈ E, 4

√
28 i ∈ E, and then that i ∈ E.

c) Show that Q( 4
√
28) is a subfield of E of degree 4 over Q.

d) Show that E = Q( 4
√
28, i), [E : Q] = 8, and find a basis for E

over Q.
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6. (10 pts) Let R be a commutative ring with unity and I, J be ideals
in R such that I + J = R. (Recall I + J = {a + b : a ∈ I, b ∈ J}.)
Prove that

R/(I ∩ J) 	 R/I ×R/J.
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