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1. (10 pts)

For G a group, we say that g ∈ G is an involution if g2 = e where
e is the identity element. Suppose G is a finite group such that all
elements of G are involutions.

a) Prove that |G| = 2k for some integer k ≥ 0.

b) Prove that G is commutative.
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2. (10 pts) Let I and J be ideals of R. We write

I + J = {i+ j : i ∈ I, j ∈ J},

and
I ∗ J = {ij : i ∈ I, j ∈ J}.

a) Is I + J necessarily an ideal of R? Prove or provide a counterex-
ample.

b) Is I ∗ J necessarily an ideal of R? Prove or provide a counterex-
ample.
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3. (10 pts) Let A : V → V be a linear transformation of a finite-
dimensional vector space V satisfying the property A2 = A.

a) Prove that ImA ∩ kerA = {0}.
b) Prove that V = ImA⊕ kerA.

c) Suppose dimV = n and rankA = k. What is the Jordan form
of A?
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4. (10 pts) Provide an example of three fields F ⊂ E ⊂ L such that
E/F and L/E are Galois, but L/F is not.

Hint: One can use subfields of the splitting field of x4 + 2 for this
problem.
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5. (10 pts) Let R be a ring with identity and let M be a left R-module.
Recall that the annihilator of M in R is

annR(M) := {r ∈ R : ∀m ∈ M, rm = 0}.

a) Prove that annR(M) is a two-sided ideal of R.

b) Note that an abelian group is a Z-module. How many possibili-
ties, up to isomorphism, are there for an abelian group M of order
400 with annZ(M) the ideal generated by 20 ∈ Z?
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6. (10 pts)

a) How many distinct actions of the group Z are there on the set
{1, 2, 3, 4}?

b) How many distinct transitive group actions of Z are there on
the set {1, 2, 3, 4}? (Recall than an action of a group G on a set
X is transitive if for every x ∈ X we have {gx : g ∈ G} = X.)
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