
1. (10 pts) Let F be a field, and consider the ring F [x] of polynomials
in one variable with coefficients in F.

a) Show that F [x] is a vector space of infinite dimension over F.

b) Construct a linear transformation φ : F [x]→ F [x] which is injec-
tive, but not surjective.

c) Construct a linear transformation ψ : F [x] → F [x] which is sur-
jective, but not injective.
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2. (10 pts)

a) Let K/F be a field extension, and M and N be square matrices
over F. Show that M and N are similar over F if and only if they
are similar over K.

Hint: What do you know about the Rational Canonical Form?

b) Let M be a square matrix over R. Show that M is similar to its
transpose.

Hint: Use Part (a), with K = C and the Jordan Canonical Form.
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3. (10 pts) Let p be a positive prime integer. Consider the set

G := {θ ∈ C : ∃n ∈ Z≥0, θp
n

= 1}

a) Show that G is an infinite group under multiplication.

b) Show that every proper subgroup of G is finite.
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4. (10 pts) Let N � G be a normal subgroup of a group G, and let
P < N be a Sylow subgroup of N for some prime number p. Show
that G = NG(P )N, i.e. that any element g ∈ G can be written as a
product g = hn, where n ∈ N and h is such that h−1Ph = P.

Hint: Given a g ∈ G, what can one say about the conjugate subgroup
g−1Pg? Where does it lie?
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5. (10 pts)

a) Show that the polynomials x4+2 and x4−8 have the same splitting
field K ⊂ C over Q.

b) Find [K : Q] and compute the Galois group G of the extension.

Hint: Use that G is a subgroup of S4.

c) How many subfields E ⊂ K such that [K : E] = 2 exist? Identify
all of them.
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6. (10 pts) Let R be a commutative ring with 1. Denote

I := {r ∈ R : ∃n ∈ Z>0, r
n = 0}.

a) Show that I is an ideal.

b) Show that if I is maximal, then for every x ∈ R either x ∈ I or
x is a unit.
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