Algebra Qualifying Exam June 2023

All rings are assumed to be unitary (i.e., with 1) and all ring homomorphisms are assumed to send 1 to 1. A ring is assumed to be possibly noncommutative unless stated explicitly.

- 1 Let G be a group and H be a subgroup of G.
 - (a) Show that the set of left cosets of H in G form a partition of G.
 - (b) Assume that G is finite. Prove Lagrange's theorem, i.e., any subgroup H of G has order |H| being a factor of |G|.
- 2 Let G be a group of order 99 containing an element of order 9. Prove that G is cyclic.
- 3 Let R be a commutative ring and I be an ideal in R. Define

rad $I = \{r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+\}$

- (a) Show that rad I is an ideal in R containing I.
- (b) Let $R = \mathbb{Z}$ and I = (k) the ideal generated by the integer k. Show that rad(k) = (k) if and only if k is a product of distinct primes.
- 4 Let S be a ring and $R \subseteq S$ be a subring. For any left R-module M, regarding S as a left R-module, define a map $\pi : S \times \operatorname{Hom}_R(S, M) \to \operatorname{Hom}_R(S, M)$ by $\pi(s, f) = (sf)$ with (sf)(x) = f(xs) for all $x \in S$. Show that π defines a left S-module structure on $\operatorname{Hom}_R(S, M)$.
- 5 Let k be a field and $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a monic polynomial in k[x]. Let $V = k[x]/\langle f(x) \rangle$ be the vector space over k. The matrix A of the linear transformation $\phi: V \to V$ defined by multiplication of x under the standard basis $\{1 = x^0, x^1, x^2, \cdots, x^{n-1}\}$ is called the companion matrix of f(x). Write the companion matrix A and prove det $(xI_n - A) = f(x)$.
- 6 Let $F \subseteq K$ be a field extension. Show that an element $\alpha \in K$ is algebraic if and only if the image of the map $ev_{\alpha} : F[x] \to K$, defined by $ev_{\alpha}(f(x)) = f(\alpha)$ is a field.