
1. (10 pts) Let K ⊂ R be a set with the following property: every
continuous function f : K → R is bounded. Prove that K is closed
and bounded (hence compact).
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2. (10 pts) Let an be a sequence of positive real numbers, such that

∞∑
n=1

an

diverges. Prove that
∞∑
n=1

an
1 + an

also diverges.
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3. (10 pts)

Recall that the Dirichlet function f : [0, 1]→ R is defined by

f(x) =

 1 if x ∈ Q,

0 if x ∈ [0, 1] \Q.

Show that the Dirichlet function is not Riemann integrable.
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4. (10 pts) Let function f : R2 → R be defined by the formula

f(x, y) =


sin(xy2)

x2 + y6
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0).

Prove that f is not continuous.
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5. (10 pts) Let E ⊂ Rn be an open set and f : E → R a function.
Suppose that all partial derivatives D1f, . . . , Dnf are bounded in E.
Prove that f is continuous in E.
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6. (10 pts) Define f : R2 → R by f(x1, x2) = (x21− x2)(3x21− x2). Prove
that f has (0, 0) as a critical point but not as a local extremum.

Hint: consider f(0, t) and f(t, 2t2) for t near 0.
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7. (10 pts)

Let µ(z) denote the Möbius transformation which maps 1 to 0, i to 1,
and −1 to ∞. What is the µ-image of the half-disk
{z : |z| < 1, Im(z) > 0}?
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8. (10 pts) Let f(z) be an entire function such that |f(z)| ≤ |z| for all
z ∈ C. Prove that f(z) is of the form f(z) = cz, where c is a complex
constant.
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9. (10 pts)

Find the Laurent series of the function

f(z) =
z

z2 − 1

in the annulus {z : 0 < |z−1| < 2} and in the annulus {z : |z−1| > 2}.
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