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Instructions:

Do not write your name or any other identifying information on any page
except this cover page.

Use the space below the statement of a problem as well as the next page for
the solution. If more space is needed, use the blank pages at the back.

All pages must be submitted. If there is work to be ignored, either cross it
out (or otherwise indicate its status) or tape a clean sheet over it to allow
the space to be used, being careful not to cover the code at the top.

You have three hours to work on these problems. Attempt six problems.
Four complete solutions will earn a passing mark. Credit for completed
parts of separate problems may combine to constitute a pass as well. You
may use results from one part of a problem (even if you did not solve it) in
your solution to a subsequent part.

No references are to be used during the exam.
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1. (10 pts) Let (xn)
∞
n=1 and (yn)

∞
n=1 be Cauchy sequences in a metric

space (X, d). Show that (d(xn, yn))
∞
n=1 is a convergent sequence in R.
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2. (10 pts) Let f : R → R be a differentiable function such that f(0) = 0
and f(x) < f ′(x) for all x ≥ 0. Prove that f(x) > 0 for all x > 0.
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3. (10 pts) Let f(x) be a continuous real-valued function on [a, b] such

that
∫ b

a (f(x))
2 dx = 0. Show that f ≡ 0.

E074AC16-4F27-410A-8616-BE8572A2677E

analysis-qe-i-august-2017

#1      7 of 24



639B5BD3-0EAC-4784-963B-477CECA4CDFC

analysis-qe-i-august-2017

#1      8 of 24



4. (10 pts) For n ∈ N, define fn : [1,∞) → R by fn(x) =
n+1
n e−nx. Show

that the series
∑∞

n=1 fn converges uniformly to a continuous function.
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5. (10 pts) Let

f(x, y) =

⎧⎨
⎩

xy3

x3+y6 if (x, y) �= (0, 0)

0 otherwise.

(a) Show that for every unit vector u, the directional derivative of f
in the direction u at the point (0, 0) exists.

(b) Is f continuous at (0, 0)?

(c) Is f differentiable at (0, 0)?
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6. (10 pts) Consider the system of equations

x2 + y2 + z2 = 2

sin(xyz) = 0.

(a) Show that there is a neighborhood of (1, 0, 1) on which the solu-
tion to the system of equations can be written as (x, y) = f(z),
where f is a vector-valued function.

(b) Is there an S ⊂ R and a vector-valued function f : S → R
2 such

that for all x, y, z ∈ R, (x, y) = f(z) iff x, y, z satisfy the system?

(c) Does the system define x and z uniquely from y in some neigh-
borhood of (1, 0, 1)?
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7. (10 pts) Let f : D → C be a holomorphic function (D is a unit disk).
Is the function Re f(z̄) harmonic? Prove or give counterexample.
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8. (10 pts) Let f be an entire function such that Re f > −1. Show that
f is constant. (Recall that function is entire if it is holomorphic in C).
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9. (10 pts) Use residues to calculate the integral

∫ ∞

0

1

1 + x4
dx.
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