
1. (10 pts)

Let (an) be a Cauchy sequence in a metric space (M, d). Show that if
(an) has a convergent subsequence, then it actually converges.
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2. (10 pts) Let an ≥ 0 and
∞∑
n=1

an <∞.

(a) Show that lim inf
n→∞ nan = 0.

(b) Give an example showing that lim sup
n→∞

nan > 0 is possible.
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3. (10 pts)

Let f : [a, b]→ R be continuous, and suppose that f takes on no value
more than twice. Show that f takes on some value exactly once.
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4. (10 pts)

Define f : R2 → R by

f(x, y) =

⎧⎪⎨
⎪⎩

(
1− cos x2

y

)√
x2 + y2 if y �= 0

0 otherwise.

(a) Show that f is continuous at (0, 0).

(b) Calculate all the directional derivatives of f at (0, 0).

(c) State the definition of differentiability for a function f : R2 → R.

(d) Show that f is not differentiable at (0, 0). Hint: violate the defi-
nition.
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5. (10 pts)

Let T : R2 → R
2 be defined by T (u, v) = (u+ v, u2 + v2).

(a) Find all points where the map is locally one-to-one. Let S be the
set of these points.

(b) Is T one-to-one on S?

(c) Determine the range of T .
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6. (10 pts)

Let U = {(x, y) ∈ R
2 | x2 + y2 < 1}. Suppose that f : U → R is such

that both partial derivatives of f are zero at every point in U . Must
f be constant? Justify your answer.
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7. (10 pts)

Let a, b be given complex numbers, |a| < |b|. Let |a| < r < |b|.
Calculate ∫

Cr

1

(z − a)(z − b)
dz,

where Cr is the circle of radius r with center 0.
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8. (10 pts)

Assume that a function f is holomorphic in an open subset U ⊂ C.
Is the function g = (Re f)(Im f) always harmonic in U? Prove the
statement or give a counterexample.
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9. (10 pts)

Let D = {|z| < 1}. Does there exist a holomorphic function f : D→ D

such that f(12) =
3
4 , f

′(12) =
2
3? (Hint: use Schwarz’s Lemma)
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